
FACULTEIT WETENSCHAPPEN

Deductive Reasoning in Guarded FO(ID)

door

Sander BECKERS

Promotor: prof. dr. M. Denecker Proefschrift ingediend tot het
behalen van de graad van
Master in de Wiskunde

Academiejaar 2010-2011

Nous ne pouvons nous élever que par l’induction mathématique,
qui seule peut nous apprendre quelque chose de nouveau.

-Poincaré, La Science et l’Hypothèse.

© Copyright by K.U.Leuven
Without written permission of the promotors and the authors it is forbidden

to reproduce or adapt in any form or by any means any part of this publication.
Requests for obtaining the right to reproduce or utilize parts of this publica-
tion should be addressed to K.U.Leuven, Faculteit Wetenschappen, Geel Huis,
Kasteelpark Arenberg 11, 3001 Leuven (Heverlee), Telephone +32 16 32 14
01.

A written permission of the promotor is also required to use the methods,
products, schematics and programs described in this work for industrial or com-
mercial use, and for submitting this publication in scientific contests.

ii

Contents

1 Introduction 1

2 FO(ID) 2
2.1 Inductive definitions . 2
2.2 Semantics . 3

2.2.1 Informal Semantics . 3
2.2.2 Syntax . 4
2.2.3 Preliminaries: three-valued logic 4
2.2.4 Formal Semantics . 5

2.3 Open Answer Set Programming 6
2.4 Comparison of Semantics . 8
2.5 Tree model property and Guarding 12

3 The Decidability of Guarded FO(ID) 15
3.1 Introduction . 15
3.2 Guarded FO(ID) . 15
3.3 Tableaux . 16
3.4 The Automaton AT . 18
3.5 Guiding the Automata . 19
3.6 Accepted Tableaux correspond to models and vice versa 20

4 A Reasoning Procedure for Simple Guarded FO(ID) 21
4.1 Introduction . 21
4.2 Simple Guarded FO(ID) . 22
4.3 Completion Structures . 23

4.3.1 Trees . 23
4.3.2 Expansion Rules . 26
4.3.3 Simple Applicability Rules 28

4.4 Completeness . 30

5 A Reasoning Procedure for Guarded FO(ID) 34
5.1 Completion Structures . 34

5.1.1 Applicability Rules . 34
5.1.2 An example of the reasoning procedure at work. 39

iii

6 Satisfiability and Completion Structures 42
6.1 Introduction . 42
6.2 Termination . 42
6.3 Soundness . 43
6.4 Completeness . 47

7 Examples 54
7.1 Why one blocked node isn’t enough 54
7.2 Proof of Even or Uneven . 61

8 Conclusion 65

9 Appendix: Nederlandstalige Samenvatting 66

iv

1 Introduction

The language of First Order Logic with Inductive Definitions (FO(ID)) was de-
veloped in [5] as an extension of First Order Logic (FO) in order to express
inductively defined concepts. First order logic is already undecidable by itself,
and adding inductive definitions makes automated deductive reasoning even
more intractable. In the field of Knowledge Reasoning and Representation, as
indeed in the discipline of logic on a whole, one is always looking for a bal-
anced trade-off between expressivity and decidability. Therefore the guarded
fragment of FO(ID) was introduced [20] - in analogy with the guarded fragment
of FO [1] - in order to preserve the characteristics of FO(ID) and at the same
time remain within reach of decidability. Although the decidability of guarded
FO(ID) has been shown, no effective reasoning procedures have been devel-
oped yet. The goal of the present work is to amend this situation by creating
such procedures, allowing one to verify the satisfiability of a guarded FO(ID)
theory automatically. To achieve this we shall expand on existing techniques
to be found in the related field of Open Answer Set Programming (OASP), an
extension of the declarative programming language Answer Set Programming.

The structure of this work is as follows. In the next chapter we introduce
FO(ID) and its semantics. The latter shall be compared to the semantics of
OASP, to provide a connection between the two paradigms. Some comments
are added on the notion of guardedness, and its relation to tree-shaped mod-
els. The third chapter presents the necessary theoretical results for guarded
FO(ID). In chapter four a reasoning procedure for a restricted version of guarded
FO(ID) is presented, that serves as a stepping stone to the full version and in-
troduces the concepts to be used. The main result is then expounded in chap-
ter five, containing a deductive reasoning procedure for guarded FO(ID). The
correctness of our approach is proven in the following chapter, where we need
to remark that we failed to construct a full proof of completeness. The use of
the procedure is illustrated by giving two examples in chapter seven.

1

2 FO(ID)

2.1 Inductive definitions

The following is a familiar example of an inductive definition:

Definition 1. Let I be an interpretation for the set of propositions Σ. For a
propositional formula ϕ in Σ, we define the relation I satisfies ϕ, denoted by
I |= ϕ, by the following induction over the subformula order:

• For an atom p ∈ Σ, I |= p iff p ∈ I;

• I |= ψ ∧ ϕ if I |= ψ and I |= ϕ;

• I |= ψ ∨ ϕ if I |= ψ or I |= ϕ;

• I |= ¬ϕ if I 2 ϕ.

Induction is a concept which is of fundamental importance to mathematics.
The idea of a proof by induction belongs to the standard techniques employed
by mathematicians, and numerous mathematical concepts are defined induc-
tively. Therefore it is a procedure with which all of us are very familiar. However,
when this notion occurs in mathematical textbooks, it often does so in an infor-
mal fashion, as in the case of Definition 1. This is possible exactly because it is
such a basic concept, of which everyone has an implicit grasp. Such a luxury is
not present in the domain of logic, since there we are forced to state explicitly
which rules are available for proving theorems, and which axioms or conjec-
tures we have to start working with. All logically derived consequences are to
be found solely using these two elements, there is no room for any informal
argument which is clear to all but not of this required form.

So if we want to formalize a certain mathematical discipline, we need a way
of expressing all its possibilities - regarding both proof procedures and defini-
tions - in a logical language, i.e. we need to create a syntax and a semantics
which captures them. In the 19th century Frege already set out to express the
whole of arithmetics in predicate logic. By now we know this is impossible, ex-
actly because of the inductive element that lies at the core of the concept of a
number: something is a number if and only if it lies within the transitive closure
of the successor relation, starting at 0.

Or, stated otherwise, it is impossible because it is impossible to express
the Domain Closure Axiom in first order logic. FO(ID) is a language which

2

was created to overcome this limitiation. It adds the possibility of expressing
inductive definitions to FO. The former, for example, could be expressed by the
following FO(ID) theory:∀x : N(0)←

∀x : N(x)← ∃y : Suc(x, y) ∧N(y)

∀x : N(x)

As with many inductive definitions, it is made up of a base case, and an in-
ductive case. The first order formula states that the domain consists exactly of
those elements that fall under the defined predicate.

Similarly, the satisfaction relation as defined in Definition 1, could be ex-
pressed in FO(ID) as:1

∀i, p : Sat(i, p)← p ∈ I

∀i, f1, f2 : Sat(i, or(f1, f2))← Sat(i, f1) ∨ Sat(i, f2)

∀i, f : Sat(i, not(f))← ¬Sat(i, f)

Here, we define the relation Sat in terms of two formula building functors
or and not, and a predicate ’∈’ representing the element relation of set theory.
This FO(ID) definition is a correct logical representation of the natural language
version in Definition 1. It has been shown that FO(ID) offers a uniform repre-
sentation for all the usual kinds of inductive definitions found in mathematical
texts: monotone definitions, definitions over a well-founded order and iterated
definitions.

2.2 Semantics2

2.2.1 Informal Semantics

An FO(ID) theory consists of, on the one hand, a set of inductive definitions
and, on the other hand, a set of regular first order logic formulas. Each defini-
tion is made up of rules, so that rules themselves are not FO(ID) formulas, but
definitions, i.e., sets of rules, are. An FO(ID) theory contains two types of pred-
icates, defined predicates and open predicates. The open predicates function

1This example comes from [19].
2The definitions in the following section come from [19]

3

as predicates normally do in first order logic, namely any structure interpret-
ing them that is consistent with the formulas in the theory is a possible partial
model of the theory. To make the structure an actual model, it should interpret
the defined predicates (given the interpretation of the open predicates) as the
definitions dictate.

This means that the← in the definitions is not to be confused with the nor-
mal implication, or equivalence, since these clearly aren’t suited to express all
forms of inductive definitions. Instead, the rules are interpreted according to
the well-founded model semantics for logic progams (parametrized on the in-
terpretation of the open predicate). This ensures that - also in the presence of
negation - their meaning is indeed what one expects from an inductive defini-
tion.

2.2.2 Syntax

Syntactically, a definition in FO(ID) is a set of definitional rules, which are of the
form:

∀x : P (x)← ϕ(x)

Here, ϕ(x) is an FO formula whose free variables are x, and ‘←’ is a new
symbol, the definitional implication. We refer to P (x) as the head of the rule
r, denoted head(r), and to the formula ϕ as its body, denoted body(r). An
FO(ID) formula is any expression that can be formed by combining atoms and
definitions, using the standard FO connectives and quantifiers. The meaning of
the FO formulas and boolean connectives is standard; we therefore only need
to define the semantics of a definition in order to define that of FO(ID).

2.2.3 Preliminaries: three-valued logic

Let us first introduce some semantical concepts. In this work, we shall only
consider relational vocabularies. An interpretation S for a vocabulary Σ con-
sists of a non-empty domain D and a mapping from each predicate symbol
P/n to a relation R ⊆ Dn. A three-valued interpretation ν is the same as a
two-valued one, except that it maps each predicate symbol P/n to a function
P ν from Dn to the set of truth values {t, f ,u}. Such a ν assigns a truth value
to each logical atom P (c), namely P ν(cν1 , ..., c

ν
n). This assignment can be ex-

tended to an assignment ν(ϕ) of a truth value to each formula ϕ, using the
standard Kleene truth tables for the logical connectives:

4

ψ,ϕ t, t t, f t,u u,u u, f f , f

ψ ∨ ϕ t t t u u f

ψ,ϕ t, t t, f t,u u,u u, f f , f

ψ ∧ ϕ t f u u f f

ϕ t u f

¬ϕ f u t

We can order the truth values {t, f ,u} by a truth order ≤t as follows: t >t
u >t f . They can also be ordered by a precision order ≤p: t >p u and f >p u.
This order induces also a precision order ≤p on interpretations: ν ≤p ν′ if for
each predicate P/n and tuple d ∈ Dn, P ν(d) ≤p P ν

′
(d). Likewise for the truth

order ≤t.
For a predicate P/n and a tuple d ∈ Dn of domain elements, we denote by

ν[P (d)/v] the three-valued interpretation ν′ that coincides with ν on all symbols
apart from P/n, and for which P ν

′
maps d to v and all other tuples d to P ν(d).

We also extend this notation to sets {(P1(d1), ..., Pn(dn)} of such pairs.

2.2.4 Formal Semantics

Our goal is to define when a (two-valued) interpretation S is a model of a defini-
tion4. We call the predicates that appear in the head of a rule of4 its defined
predicates and we denote the set of all these by Def(4); all other symbols are
called open and the set of open symbols is written Op(4). The purpose of4 is
now to define the predicates Def(4) in terms of the symbols Op(4), i.e., we
should assume the interpretation of Op(4) as given and try to construct a cor-
responding interpretation for Def(4). Let O be the restriction S|Op(4) of S to
the open symbols. We are now going to construct a sequence of three-valued
(νOα)0≤α≤β interpretations, for some ordinal β, each of which extends O; we will
use the limit of such a sequence to interpret Def(4).

• νO0 assigns O(P (d)) ∈ {t, f} to P (d) if P ∈ Op(4) and u if P ∈ Def(4);

• νOi+1 is related to νOi in one of two ways:

5

– Either νOi+1 = νOi [P (d)/t], such that 4 contains a rule ∀xP (x) ←
ϕ(x) with νi(ϕ[d]) = t

– Or νOi+1 = νOi [U/f], where U is any unfounded set, meaning that
it consists of pairs of predicates P/n and tuple d ∈ Dn for which
P ν

O
i (d) = u, and for each rule ∀xP (x) ← ϕ(x), we have that

νi+1(ϕ[d]) = f .

• For each limit ordinal λ, νOλ is the least upper bound w.r.t. ≤p of all νOδ for
which δ < λ.

We call such a sequence a well-founded induction of 4 in O. Each such se-
quence eventually reaches a limit νOβ . It has been shown that all sequences
reach the same limit. It is now this νOβ that tells us how to interpret the defined
predicates. To be more precise, we define that: S |= 4 iff S|Def(4) = νOβ , with
O = S|Op(4).

If there is some predicate P/n for which some tuple d ∈ Dn of domain
elements is still assigned u by νOβ , the definition has no models extending O.
Intuitively, this means that, for this particular interpretation of its open symbols,
4 does not manage to unambiguously define the predicates Def(4). If no do-
main atom is assigned u by νOβ , we say the definition is total. This corresponds
to our normal understanding of a definition: there should be an unambiguous
answer to the question whether some object falls under it or not, there should
be no room for choices.

2.3 Open Answer Set Programming

The method we will develop in this work is inspired by the work done by Hey-
mans et al. [6, 10, 11, 12, 13, 14] in the related field of Open Answer Set
Programming, OASP for short. OASP arose as a generalization of Answer Set
Programming, by introducing an open domain assumption. Lifschitz, one of the
founders of Answer Set Programming, describes it as follows:

Answer Set Programming (ASP) is a form of declarative pro-
gramming oriented towards difficult search problems. It has been
applied, for instance, to plan generation and product configuration
problems in artificial intelligence and in historical linguistics. [16]

Similarly to FO(ID), the origins of ASP lie in the field of logic programming.
Syntactically, ASP programs look like Prolog programs, but the computational

6

mechanisms used in ASP are different: they are based on the ideas that have
led to the development of fast satisfiability solvers for propositional logic. It has
emerged from the interaction between two lines of research; the one on the
semantics of negation in logic programming and the other on applications of
satisfiability solvers to search problems.

An Answer Set Program consists of a finite set of rules of the form F ← G,
where F is a disjunction of literals and G is a conjunction of literals. If the body
of a rule is true, the head has to be true as well. Moreover, a positive atom p

can only become true if it figures in the head of a rule with a true body, where
the truth of the body doesn’t depend on p. A negative atom, on the other hand,
can be chosen to be true if this doesn’t conflict with any of the rules.

We will give two simple examples to illustrate the semantics of ASP in an
informal manner. Take the following program

p←

r ← p, q

There are three sets of atoms that don’t contradict these rules, namely

{p} , {p, r} , {p, q, r}

but only the set {p} contains just the atoms which have to be true according
to the rules, rather than simply agreeing with them. This set is called the answer
set, it is the smallest set that doesn´t conflict with the program.

The next example introduces negation into the body of the rules. One effect
is that in this case there may be several answer sets.

p← not q

q ← not p

There are four relevant sets of atoms for this program,

∅, {p} , {q} , {p, q}

The first set is in conflict with the rules, for the absence of p and q implies
their presence. The fourth set contains atoms for which there is no rule with a

7

true body and the respective atoms in the head, so it isn’t an answer set either.
The second and third sets are symmetrical, so what holds for the one will hold
for the other. We have a look at the set containing only p. In this case, not q is
true, therefore p has to be true as well. q only figures in one rule, of which the
body is false, so it has to be false as well. Therefore {p} is an answer set, and
so is {q}.3 On page 39 this example is analyzed in terms of FO(ID).

Logic programs under the answer set programming paradigm are decid-
able, and answer set solvers exist, but ASP has a limited applicability due to its
restriction to finite domains. OASP was developed to remedy this defect, but
the expressivity gained by allowing infinite universes is countered by the loss of
decidability. (For example, the undecidable domino problem can be reduced to
it [11].) In order to regain decidability, the fragment of (Extended) Conceptual
Logic Programs has been created [13]. The syntax of the programs is re-
stricted, such that satisfiability can be decided. Besides theoretical decidability
results for this fragment, effective reasoning procedures have been developed
as well [6, 14]. Some of the ideas that underlie these procedures will prove
equally fruitful within the domain of FO(ID).

2.4 Comparison of Semantics

The semantics of both FO(ID) and OASP can be seen as possible interpreta-
tions of Prolog programs: the well-founded semantics in the case of FO(ID),
and the stable model semantics in the case of OASP. In FO(ID), the purpose
of a definition ∆ is to define the predicates Def(∆) in terms of the open pred-
icates Op(∆), i.e. we should assume the interpretation of Op(∆) as given and
try to construct a corresponding interpretation for Def(∆). For OASP there’s a
very similar interpretation. As in FO(ID), there are two categories of predicates:
free and non-free predicates. A predicate p that occurs in a program P is free
if it occurs in a free rule p(x) ∨ notp(x) ←, and it is non-free if it doesn’t. (A
non-free predicate has to occur in the head of at least one rule, otherwise it’s
superfluous.) Free predicates correspond to open predicates, they can be cho-
sen randomly; non-free predicates are determined by the rules in which they
figure in the head.

Let O be S|Op(4) as before, and assume we have a sequence of interpre-

3Remark that such a situation can never occur for a total definition in FO(ID): if there are no
open predicates then a definition will be unique, no choices will be possible. This corresponds to
our informal expectations regarding a definition.

8

tations (νOα)0≤α≤β . The difference in semantics is determined by the different
rules for determining νi+1 out of νi.4 We consider three sets of rules for con-
structing a new interpretation out of a previous one, corresponding to three
semantics for a “definition”. These sets are formed with the following rules:

1. Basic: νOi+1 = νOi [P (d)/t], such that ∆ contains a rule ∀xP (x) ← ϕ(x)
with νOi (ϕ[d]) = t.

2. FO: νOi+1 = νOi [U1/f , U2/t], where U1 and U2 are any (disjunct) unfounded
sets, and for each rule ∀xP (x)← ϕ(x), νOi+1(ϕ[d]) = f , where P (d) ∈ U1,
and such that ∆ contains a rule ∀xQ(x)← ϕ(x) with νOi+1ϕ[e]) = t, where
Q(e) ∈ U2.

3. ID: νOi+1 = νOi [U/f], where U is any unfounded set, and for each rule
∀xP (x)← ϕ(x), νOi+1(ϕ[d]) = f , where P (d) ∈ U .

4. OASP: νOi+1 = νOi [U1/f , U2/t], where U1 and U2 are any (disjunct) un-
founded sets, and for each rule ∀xP (x) ← ϕ(x), νOi+1(ϕ[d]) = f , where
P (d) ∈ U1, and such that ∆ contains a rule ∀xQ(x)← ϕ(x) with νOi [U1/f](ϕ[e]) =
t, where Q(e) ∈ U2.

The semantics for FOL, called the completion semantics, is such that it con-
sists of rule 2 (which of course implies all others), which means that we’re
interpreting ∆ as a set of equivalences. The semantics for FO(ID) consists of
rules 1 and 3, which means that we’re interpreting ∆ as an inductive definition.
Finally, the semantics for the fragment of OASP without negations in the head
of non-free rules is given by rule 4 (which implies 1 and 3), which means that
we’re interpreting ∆ as a set of rules in a logic program under the stable model
semantics.

To understand the difference between FO(ID) and this fragment of OASP,
the following definition is helpful.

Definition 2. An FO(ID) theory T containing only one definition 4, or T in-
terpreted as an OASP program P 5, is stratified, if there is an assignment S of
numbers to the defined predicates in 4 such that the following holds:6

1. If Q positively occurs in ϕP (x), then S(P) ≥ S(Q).
4We only consider programs of OASP such that there are no negations in the head of non-free

rules. The fragment of Extended Conceptual Logic Programs falls within this category.
5I.e. 4 is interpreted as a set of OASP rules and the open predicates are represented by free

rules.
6We assume that4 is written in negation normal form.

9

2. If Q negatively occurs in ϕP (x), then S(P) > S(Q).

For a stratified theory, the semantics for OASP and FO(ID) with regard to
4 coincide, that is, every application of rule 4 can be broken down into several
applications of rule 3 and an application of rule 1. We can explain this as
follows.

The idea behind rule 1 is that a body has to be true first in order to justify
a head, so that no defined predicate can ever be its own justification.7 Rule 3
serves to justify negated atoms. It contains an extra degree of freedom com-
pared to rule 1, in that a set of falsehoods may be used to justify itself. This
corresponds to the minimality of a definition: if it is consistent to assume that
something doesn’t fall under it, it doesn’t. Rule 4, on the other hand, adds
another degree of freedom: if a set of falsehoods justifies a set of truths, and
in turn this set of truths together with the set of falsehoods justifies the set of
falsehoods, both sets are justified. It is precisely at this point that an element of
indeterminism creeps in - which is not to be found in case of a definition - since
there may be different choices of the sets U1 and U2 that satisfy this condition.
We will now prove our claim.

Theorem 3. For a stratified FO(ID) theory T , any sequence of interpretations
(νOα)0≤α≤β that can be constructed from a given νO0 using rule 4, can be derived
as well using only rules 1 and 3.

Proof. Let’s say we have a stratified theory T , and an application of rule 4 that
cannot be split up in the said manner. So there are unfounded sets U1 and U2

at level νOi , where we would like to obtain U1/f and U2/t at some level in the
sequence, and this can only be achieved using rule 4.

This implies that there’s an atom P (d) ∈ U1 and a rule ∀xP (x) ← ϕP (x),
with νOi [U1/f](ϕP [d]) = u, but νOi [U1/f , U2/t](ϕP [d]) = f . This means there
is an atom Q(e) ∈ U2 that occurs negatively in a rule ∀xP (x) ← ϕP (x), so
S(P) > S(Q).

If we can justify Q(e) first by applying rule 1, and afterwards apply rule 3,
the problem would be solved. So let’s assume we cannot do this. Since rule
4 did work, there has to be a rule ∀xQ(x) ← ϕQ(x) with νOi [U1/f](ϕQ[e]) = t.
Now we consider two possibilities.

In the first case, assume νOi [(U1\{P (d)})/f](ϕQ[e]) = u. So adding ¬P (d)

7With justification we mean: causing it to be true, where of course the tautology A ⇒ A isn’t
seen as a cause for truth.

10

changes ϕQ[e] from u to t. This means that P (d) occurs negatively in ϕQ[e],
and thus S(Q) > S(P), which contradicts S(P) > S(Q).

This leaves us with the second case, where νOi [(U1\{P (d)})/f](ϕQ[e]) = t.
We then take U3 to be the smallest subset of U1 such that νOi [U3/f](ϕQ[e]) = t.
So X(x) occurs negatively in ϕQ[e] for every X(x) ∈ U3, implying S(Q) >

S(X). Now we can try to apply rule 3 to obtain νOi+1 = νOi [U3/f]. If this works,
we could apply rule 1 to justify Q(e). So assume it doesn’t. This means there
is another atom8 R(g) ∈ U3 such that there’s a rule ∀xR(x) ← ϕR(x), with
νOi [U3/f](ϕR[g]) = u, and νOi [U1/f , U2/t](ϕR[g]) = f .

Again there are two cases to be distinguished.
First assume νOi [(U1\{P (d)})/f , U2/t](ϕR[g]) = u. This implies that P (d)

occurs positively in ϕR[g], and thus S(R) ≥ S(P). This leads to the contradic-
tion S(P) > S(Q) > S(R) ≥ S(P).

So we may assume νOi [(U1\{P (d)})/f , U2/t](ϕR[g]) = f . Yet again we
consider two cases.

1. νOi [(U1\{P (d)})/f](ϕR[g]) = u. We are then in a situation that is entirely
similar to our starting point, except that U1\{P (d)} contains one element
less than U1. We can continue this line of reasoning, until we end up with
Un = ∅. In that case rule 4 is equivalent to several applications of rule 1,
so our hypothesis is falsified.

2. νOi [(U1\{P (d)})/f](ϕR[g]) = f . Take U4 to be the smallest subset of
U1\{P (d)} such that νOi [U4/f](ϕR[g]) = f . So X(x) occurs positively
in ϕR[g] for every X(x) ∈ U4\{R(g)}, implying S(R) ≥ S(X). We
can then try to apply rule 3 to obtain νOi+1 = νOi [U4/f], and then this
would allow us to obtain νOi+2 = νOi+1[U3/f]. So assume rule 3 doesn’t
work. This means that there’s a T (i) ∈ U4\{R(g)} and a rule ∀xT (x) ←
ϕT (x), with νOi [U4/f](ϕT [i]) = u, and νOi [U1/f , U2/t](ϕT [i]) = f . Assume
νOi [(U1\{P (d)})/f , U2/t](ϕT [i]) = u. As in the case of R(g), S(T) ≥
S(P). This then leads to the contradiction S(P) > S(Q) > S(R) ≥
S(T) ≥ S(P). So νOi [(U1\{P (d)})/f , U2/t](ϕT [i]) = f . There are two
possibilities.

(a) νOi [(U1\{P (d)})/f](ϕT [i]) = u. We are then in a situation that is
entirely similar to our starting point, except that U1\{P (d)} contains

8For simplicity we assume there is only one such atom, the argument can be repeated in case
there are several.

11

one element less than U1. We can continue this line of reasoning,
until we end up with Un = ∅. In that case rule 4 is equivalent to
several applications of rule 1, so our hypothesis is falsified.

(b) νOi [(U1\{P (d)})/f](ϕT [i]) = f . This situation is the same as for
R(g), except that max(|U4|) = |U1\{P (d)}| < max(|U3|) = |U1|. We
can continue this line of reasoning, until we end up withmax(|Un|) =
0, in which case rule 3 can surely be applied to give us νOi+1 =
νOi [Un/f]. This would then allow a sequence of applications of rule
3 to νOi+1 to obtain νOi+n−2 = νOi+n−3[U3/f].

One can easily use this result to construct a translation from Extended Con-
ceptual Logic Programs - the most general fragment of OASP for which a rea-
soning procedure has been developed [14] - to the fragment of guarded FO(ID)
in which all definitions are stratified.9 This implies that the reasoning procedure
we will develop for guarded FO(ID) can handle a strictly more expressive lan-
guage than the procedures developed so far by Heymans et al.

2.5 Tree model property and Guarding

Many decidability results depend significantly on something called the tree
model property. There is, for example, the guarded fragment of first order logic,
developed by Andréka, van Benthem and Németi [1]. The idea behind this
fragment, which is decidable, is that all quantification is guarded by atomic for-
mulas. Quantified formulas need to have the form:

∃y(G(x,y) ∧ ψ(x,y))

or

∀y(G(x,y)→ ψ(x,y))

Thus quantifiers may range over a tuple y of variables, but are ’guarded’ by
an atom G that contains all the free variables of ψ. Guarded predicate logic
theories have the tree model property, which comes down to stating that every

9The translation is not presented here since this would require a detailed study of Conceptual
Logic Programs, which would lead us too far astray.

12

satisfiable theory has a model which has a tree-shape, i.e. it can be repre-
sented by a labeled tree. This property figures prominently in the decidability
results.

We will see further on that the generalization of the guarded fragment to
guarded FO(ID) will inherit the tree model property (or, at least, a variant of it)
and with it the decidability. From this one may suspect that there is a connection
between the property of guardedness and the tree model property. An informal
suggestion to their connection can be hinted at as follows.

The undecidability of predicate logic is due to the presence of quantifiers.
Without the use of quantifiers, predicate logic poses no more challenges than
propositional logic, which is decidable. The truth of a quantified formula in its
most general sense, such as

∀xψ(x)

can in the worst case only be decided by verifying the formula ψ for all
possible combinations of domain elements x. The same holds for existential
quantifiers, in the sense that one might have go through all possible combina-
tions of domain elements to find out that it has been satisfied. The fact that in
general a domain of quantification doesn’t need to have any structure, which
could guide the search process, causes the undecidability. Therefore a natural
direction to obtain decidability is to limit the possibilities for x, in such a way that
all possibilities can be explored in a decidable fashion. Guardedness poses a
restriction to the occurrence of quantifiers that does just this. The x part in the
guarded formulas above are either interpreted as specific domain elements, or
they are themselves variables in a guarded formula of which these formulas
are subformulas. In the end, the domain of every complex formula ψ will have
been restricted to the domain of an atom, or to a subdomain of an atom.

If we use a tree to represent a model, what happens is that we group to-
gether domain elements which occur together in instantiations of atoms. In
practice this means we limit the possibilities of satisfying an atomG(a, x1, ..., xn),
where a is a domain element and the xi are variables, to those elements which
are represented by sets of nodes that have an element in common to the set
of nodes representing a. In this way we are at the same time limiting the reach
of quantified formulas to these elements, so that their truth or falsehood can
be determined by checking properties of all nodes which represent them. The
structure of the trees used is such that this comes down to checking properties

13

of nodes in a certain subtree. Even if this subtree is infinite, the elements out of
which any such tree is built up are limited, so that at some point certain patterns
will re-emerge and one can anticipate the continuation. It might be helpful to
keep this explanation in mind in order to understand the approach used in this
work.

14

3 The Decidability of Guarded FO(ID)

3.1 Introduction

Our goal is to give an effective reasoning procedure for the guarded fragment
of FO(ID), but in order to achieve this we shall first introduce the decidability
of guarded FO(ID) without giving such a procedure. This is the purpose of the
current section. The results we shall present show a correspondence between
satisfiable guarded FO(ID) theories and accepted tableaux constructed in func-
tion of such theories. We will use this correspondence as an intermediary for a
further correspondence, namely between satisfiable guarded FO(ID) theories
and so-called completion structures constructed in function of such theories.
These completion structures are finite representations of tree-structured mod-
els of FO(ID) theories.

The guarded fragment is a decidable fragment of FO(ID), analoguous to
the guarded fragment of fixed point logic. The latter was introduced by Grädel
in [8], by adding greatest and least fixpoints to the guarded fragment of first
order logic, mentioned in section 2.5. We have already stressed the connec-
tions between the ideas behind the guarded fragment and the development of
Conceptual Logic Programs, which form a decidable fragment of OASP. The
decidability of the latter and of guarded FO(ID) is shown in a similar fashion,
by reducing the question of satisfiability of a theory (or of a predicate, in the
case of OASP) to the question of the non-emptiness of a two-way alternating
tree automaton (2ATA) [8, 11]. The rest of this chapter presents the necessary
theoretical results to be found in [20].

3.2 Guarded FO(ID)

We recall that a FO formula is called guarded if every one of its quantifiers is of
the form

∃y(G(x,y) ∧ ϕ(x,y))

or

∀y(G(x,y)→ ϕ(x,y))

15

such that, free(ϕ(x, y)) ⊆ free(G(x, y)). We now define a guarded fragment
of FO(ID). This fragment will allow only theories of the form {4, ϕ}, where 4
is a definition and ϕ an FO formula. All FO(ID) theories can be brought into
this form by a transformation which typically (though not always) preserves
guardedness.

Definition 4. Let T be an FO(ID) theory, consisting of precisely one definition
4 and one FO formula ϕ. T is guarded if4 is total, ϕ is a guarded formula and
for each rule ∀xP (x)← ψ, it holds that ψ is a guarded formula and x ⊆ free(ψ).

We introduce some simplifying assumptions. From now on, we will assume
that all formulas are in a negation normal-form, in which negation only appears
directly in front of atoms. Moreover, we also assume that, for each defined
predicate D, there is precisely one rule ∀xD(x) ← ψ in 4. Every definition 4
can be brought into this form, by removing the set RD of all such rules from
4, and replacing it by the single rule ∀xD(x)←

∨
r∈RD

body(r); moreover, this
transformation preserves guardedness. If r is the unique rule of 4 for which
head(r) = D(x), we will denote the formula body(r) by ϕD(x).

To ease notation, we fix 4 and ϕ from now on.

3.3 Tableaux

In this section, we define a tableau as a tree structure, whose nodes will be la-
beled with certain sets of formulas. These formulas are taken from the following
set:

Definition 5. We inductively define the set of all ϕ-relevant formulas as con-
sisting of those formulas that are:

• a subformula of ϕ; or

• of the form P (x) for some predicate P appearing in ϕ; or

• ϕP -relevant, with P a defined predicate appearing in ϕ.

For a set of constants C containing const(ϕ), the set of all (ϕ,C)-relevant for-
mulas consists of all ground formulas ψ(c) for which ψ(x) is ϕ-relevant and
c ⊆ C.

To be more precise, we will consider sets of (ϕ,C)-relevant formulas that
satisfy the following closure properties.

16

Definition 6. Let ϕ be a formula and C a set of constants. A (ϕ,C)-type is a
set Γ of (ϕ,C)-relevant formulas, that satisfies the following conditions:

• For all (ϕ,C)-relevant atoms P (c), Γ contains P (c) or ¬P (c), but not both;

• If ϕ1 ∧ ϕ2 belongs to Γ, then ϕ1 and ϕ2 also belong to Γ;

• If ϕ1 ∨ ϕ2 belongs to Γ, then ϕ1 or ϕ2 also belong to Γ;

• If ∀xγ(x)⇒ ϕ(x) and γ(c) belong to Γ, then ϕ(c) belongs to Γ.

• For a defined predicate P , if P (t) belongs to Γ, then ϕP (t) belongs to Γ;
if ¬P (t) belongs to Γ, then the negation normal form of ¬ϕP (t) belongs
to Γ.

When constructing a (ϕ,C)-type Γ, there are two kinds of choices to be made:
for open atoms P (c), we have to chose whether P (c) ∈ Γ or ¬P (c) ∈ Γ; and
for a disjunction ψ1∨ψ2 ∈ Γ, we have to choose whether ψ1, ψ2, or both belong
to Γ. Given a structure S and a valuation χ for C, we will say that a (ϕ,C)-type
Γ is realized in S, χ if S, χ |= Γ and, for each ψ1 ∨ ψ2 ∈ Γ, ψi ∈ Γ if and only if
S, χ |= ψi. It can easily be seen that the following property holds:

Lemma 7. Let ϕ be a formula and C a set of constants. Let S be a structure
interpreting C and the alphabet of ϕ. For each subsentence ψ of ϕ such that
S |= ψ, there exists a (ϕ,C)-type that contains ψ and is realized in S.

Let C0 be the set of all constants appearing in ϕ-relevant formulas. We now
define tableaux as follows.

Definition 8. Let K ⊇ C0 be a set of constants. A K-tableau for ϕ is a tree
whose nodes are pairs (Γ, C) of a set of constants C ⊆ K and a (ϕ,C)-type Γ,
which can be constructed by the following non-deterministic induction:

• The root of the tree is a (ϕ,C0)-type that contains ϕ;

• Whenever there is a node (Γ, C) such that Γ contains ∃ψ(x), but for all
c ⊆ C, ψ(c) /∈ Γ, we add a child (Γ′, C ′) to this node as follows. We
select a tuple of constants c ⊆ K and let C be c ∪ C0 ∪ const(ψ); Γ′ is a
(ϕ,C ′)-type that contains ψ(c) and all sentences from Γ that contain only
constants from C ′.

17

3.4 The Automaton AT

The tableaux just presented will be used as input for a two way alternating tree
automata. Such an automaton consists of the following components:

• A set of states Q, partitioned into a set of existential states, Q∃, and a
set of universal states, Q∀; one of these q ∈ Q is designated as the initial
state;

• A transition function t, mapping each pair (v, q) of a node v of the input
tree and a state q ∈ Q to a subset of Q∪ {◦s|s ∈ Q}, where the meaning
of the “◦”-symbol is that if ◦q′ ∈ t(v, q), then the automaton can assume
state q′ and move to a neighbouring node v′ of the input tree - this new
v′ can be either a child or a parent of v. If a state q′ ∈ t(v, q), on the other
hand, then the automaton can assume state q′ while remaining in node
v.

• A score function Ω, mapping each state q ∈ Q to a number Ω(q) ∈ N.

The accepting condition of such an automaton is defined by means of a parity
game. This game is played between two players, 1 and 2. A play is defined as
a sequence of state-node pairs in the obvious way, i.e., each play starts in (I, r)
where I is the initial state of the automaton and r the root of the input tree, and
a play reaching (v, q) can be extended by either a transition to (v, q′) for which
q′ ∈ t(v, q) or by a transition to (v′, q′) for which ◦q′ ∈ t(v, q) and v′ is a child or
parent of v. In these plays, player 1 chooses the move in all existential states
q ∈ Q∃ and player 2 chooses the move in the other states.

The winner of a play is decided as follows. If the play is finite, the player
who can no longer make a move loses. If the play is infinite, we consider the
set Q∞ of states that are repeated infinitely often and look, in particular, at
minq∈Q∞Ω(q): if this number is even, player 1 wins; otherwise, player 2 wins.
A strategy for player 1 is a function f mapping each pair (v, q) to some other
pair (v′, q′) such that (v′, q′) is a valid move in (v, q). A play follows a strategy
f if every state (v, q) for which q ∈ Q∃ is indeed followed by f(q, v). A strategy
is winning if and only if every play that follows it is indeed winning for player 1.
An automaton accepts an input tree T if there is a winning strategy for T .

We now define an automaton Aϕ to check whether a tableau represents a
model of {4, ϕ}.

Definition 9. For a set of constants C ⊇ C0 , we define ACϕ as follows:

18

• Its states are (ϕ,C)-relevant formulas, where states of the form ∃xψ, ψ1∨
ψ2 or f are existential and all others are universal; the initial state is ϕ;

• The possible transitions t(v, ψ) are as follows:

– t(v, ψ1 ∨ ψ2) = t(v, ψ1 ∧ ψ2) = {ψ1, ψ2};

– t(v, f) = t(v, t) = ∅;

– For an open literal l, t((Γ, C), l) is {t} if l ∈ Γ and {f} otherwise;

– For a defined predicate D, t(v,D(t)) is
{
ϕD(t)

}
; t(v,¬D(t)) is {ψ}

with ψ the negation normal form of ¬ϕD(t);

– Let ψ be either ∃xγ(x) ∧ η(x) or ∀xγ(x) ⇒ η(x). If const(ψ) * C,
then t(v, ψ) = ∅. Otherwise, t(v, ψ) = {◦ψ}∪{η(c)|c ⊆ C and γ(c) ∈ Γ};

• The score function Ω assigns 4 to all states, except:

– Ω assigns 1 to all states of the form D(t) with D a defined predicate;

– Ω assigns 2 to all states of the form ¬D(t) with D a defined predi-
cate;

– Ω assigns 3 to all states of the form ∃xψ(x);

3.5 Guiding the Automata

Our proofs will require us to construct winning strategies for our automaton.
This means we need to guide it towards the right reason why some formula
holds. For instance, let us consider the following definition:P ← P ∨Q

Q← t

This definition has one model, namely, both P and Q are true. Inspecting
the formula ϕP = P ∨Q, we see that there are two possible motivations for why
P holds: either it holds because P holds (which it does!), or it holds because
Q holds (which it also does). The right explanation is of course the second
one, since it should not be possible to derive P solely from itself. To make this
distinction, we need some additional property of formulas.

We fix a well-founded induction (να)α≤β for the definition 4. For every
formula ψ with νβ(ψ) = t, there exists some ordinal η ≤ β such that for all

19

δ < η, νδ(ψ) = u, and for all δ ≥ η, νδ(ψ) = t. We call this ordinal η the level of
ψ and denote it as |ψ|. This level of course depends on the particular sequence
(να)α≤β ; in order to not overly complicate notation, however, we leave this
implicit. For uniformity, we also define |ψ| for formulas with νβ(ψ) = f ; here, we
make |ψ| some ordinal δ > β. Analogously, for each ψ with νβ(ψ) = f , there
exists some ordinal η ≤ β such that for all δ < η, νδ(ψ) = u, and for all δ ≥ η,
νδ(ψ) = t . We call this η the negation level of ψ and denote it as [ψ] ; for a
formula ψ such that νδ(ψ) = t, we define [ψ] to be an ordinal δ > β.

Lemma 10. Let (να)α≤β be a well-founded induction for 4.

• If |ψ| ≤ β, then νβ(ψ) = t; if [ψ] ≤ β, then νβ(ψ) = f ;

• |ψ1 ∨ ψ2| = min(|ψ1|, |ψ2|) and |∃xψ(x)| = mind⊆D(|ψ[d]|);

• |¬ψ| = [ψ] and [¬ψ] = |ψ|.

This of course implies also [ψ1 ∧ ψ2] = min([ψ1] , [ψ2]) and [∀xϕ(x)] =
mind⊆D([ϕ[d]]).

3.6 Accepted Tableaux correspond to models and vice versa

We now give the results which we will use later on, without proof.

Theorem 11. If ϕ is satisfiable, there exists a tableau in a set K ⊇ C0 of
2w(ϕ) + |C0| constants that is accepted by AKϕ .

In order to formulate the soundness result, we show how to construct a
model ST from an accepted tableau T . For a constant c, two nodes v, v′

in T are c-equivalent if each node on the path between them has c in its la-
bel. The domain of ST is the set of all c-equivalence classes [v]c. ST in-
terprets each constant c ∈ C0 by [v]c = T and each open predicate P as
follows: ([v1]c1 , ..., [vn]cn

) ∈ PST if there exists a (Γ, C) ∈ ∩i[vi]ci
such that

P (c1, ..., cn) ∈ Γ. Given this interpretation for the open predicates, we in-
terpret the defined predicates as dictated by the definition 4. For a node
v = (Γ, C) ∈ T , we define the valuation χv as mapping each c ∈ C to the
domain element [v]c.

Theorem 12. If AKϕ accepts a tableau T , then ST |= ϕ.

20

4 A Reasoning Procedure for Simple Guarded FO(ID)

4.1 Introduction

The results given in the previous section depend on results for 2ATA’s, and
allow for satisfiability checking in an obscure and indirect way only. For con-
ceptual logic programs this problem has been overcome, by developing effec-
tive reasoning procedures to check for satisfiability. At first, [6] this result was
obtained for a restricted version of CoLP’s, namely simple CoLP’s, but recently
these results have been generalized in [13, 14] to the area of extended concep-
tual logic programs. We will parallel their approach, by developing an effective
reasoning procedure for a restricted part of the guarded fragment of FO(ID)
in this section, and generalizing this result in the next section. We shall call
the restricted fragment under consideration in this section the simple guarded
fragment of FO(ID). The challenge will be to represent an infinite model in a
finite way, which we shall resolve building on the notion of a completion struc-
ture as found in [6]. However, due to the differences between guarded FO(ID)
and CoLP’s, our completion structures and the associated reasoning proce-
dure contain many elements not to be found in their counterpart for conceptual
logic programs.

The working of the 2ATA’s is such that in both cases they perform three
checks on an input-tree, which is the representation of a possible model:

• check if the tree is well-behaved, in the sense that it has the right form to
be a possible model of the theory/predicate

• check if it is consistent

• check if some acceptance condition is fulfilled, which is related to restric-
tions due to the semantics

The first two checks do not depend on the tree (and thus model) being finite
or not, in the sense that you have to check for each node (or certain groups of
nodes) that it fulfills certain conditions, and if the tree happens to be infinite you
will have to perform these same checks an infinite amount of times. The third
check, however, is a condition that has to be fulfilled by each infinite branch
of the tree. Namely, that a certain kind of states (which correspond to certain
characteristics of the node one is at) cannot occur an infinite amount of times
(or, in the case of FO(ID), cannot occur if some other kind of state doesn’t occur

21

an infinite amount of times). In both cases, the main condition is that there may
not be an infinite amount of positive states. Informally, this can be explained as
follows.

The tree represents a justification for either a formula (in FO(ID)) or an atom
(in OASP). The first node states that the formula is true (or, the atom is part
of a model), and the other nodes are formed to justify this statement. If the
presence of a positive literal in a certain node requires an infinite justification,
this will result in the tree having an infinite branch. If the 2ATA goes through
this branch, it will enter a positive state whenever the node it is at contains a
positive (defined, or non-free) literal. Thus, the acceptance condition is meant
to express that it is not allowed to have a justification which requires an infi-
nite amount of positive (defined, or non-free) literals to be part of the model.
However, due to the way the 2ATA’s are constructed in the CoLP case and the
FO(ID) case respectively, there’s a difference in interpretation of the previous
statement. We now proceed to define the necessary concepts we need to built
up our reasoning procedure.

4.2 Simple Guarded FO(ID)

Our first approach is to develop the procedure for theories that have a restricted
syntax, due to two motivations. Firstly, it is easier to understand the full algo-
rithm after a simpler version has been studied first. Secondly, unfortunately we
failed to establish a full proof for the completeness of the general procedure,
therefore the simpler version is at this moment the only one for which we have
established a finished result.

There are two restrictions we will enforce, that serve to ensure that every
positive defined atom can be justified by a finite number of different defined
literals. This is not true in general for guarded FO(ID) theories, since although
it is prohibited that any atom is justified by an infinite number of positive defined
atoms, it may well be the case that one needs an infinite amount of negative
defined atoms to justify it. Further, we also want to ensure that no positive
defined atom P (c) needs an atom P (d) to justify it, where c 6= d.10

Let D(T) be the marked predicate dependency graph of a guarded FO(ID)
theory T , where D(T) has as vertices the predicates from4 and as arcs tuples
(P,Q) where Q(y) positively occurs inϕP (x), we call an arc (P,Q) marked if
x 6= y.

10The case where c = d is already prohibited by the semantics of FO(ID).

22

Definition 13. A guarded FO(ID) theory T is simple if it is stratified and its
marked predicate dependency graph D(T) doesn’t contain any cycle with a
marked edge.11

We will now present the structures that will represent possible models of
a theory T and contain the necessary information to justify ϕ. Our reasoning
procedure will consist in building up such structures and checking if they fulfill
the conditions for legitimately representing a model.

4.3 Completion Structures

4.3.1 Trees12

For an x ∈ N∗0, i.e. a finite sequence of natural numbers (excluding 0), we
denote the concatenation of a number c ∈ N0 to x as xc. Formally, a (finite)
tree is a (finite) subset of N∗0 such that if xc ∈ T for x ∈ N∗0 and c ∈ N0, then
x ∈ T . Elements of T are called nodes and the empty word ε is the root of T .
For a node x ∈ T we call succT (x) = {xc ∈ T |c ∈ N0}, the successors of x.
The arity of the tree is the maximum amount of successors any node has in
the tree. The set AT = {(x, y)|x, y ∈ T, ∃c ∈ N0 : y = xc} denotes the edges of
a tree T . We define a partial order ≤ on a tree T such that for x, y ∈ T, x ≤ y iff
x is a prefix of y. As usual, x < y if x ≤ y and y � x. A (finite) path P in a tree
T is a prefix-closed subset of T such that ∀x 6= y ∈ P : |x| 6= |y|. A branch B in
a tree T is a maximal path (there is no path that contains it) which contains the
root of T .

A labeled tree is a pair (T, t) where T is a tree and t : T → Σ is a labeling
function; sometimes we will identify the tree (T, t) with t. We denote the subtree
of T at x by T [x], i.e., T [x] = {y ∈ T |x ≤ y}. For labeled trees t : T → Σ, the
subtree of t at x ∈ T is t[x] : T [x]→ Σ such that t[x](y) = t(y) for y ∈ T [x]. For
a tree t : T → Σ, a tree s : S → Σ, and a symbol a ∈ Σ, we denote with tas, the
tree t with the subtrees starting with the first node on every path with label a (in
case such a node exists) replaced by s. Consider the trees s and t depicted in
Figure 1. The tree resulted by the application of tas is depicted in Figure 2.

The basic data structure for our algorithm will be a completion structure.
(We continue to assume 4 and ϕ are fixed.)

11Thus "simple" is nearly the same as stating that there may be no cycle in the dependency
graph, where one also takes into account negative occurrences. The definition of stratified was
given on page 9.

12We define trees as in [6].

23

t :

ε{b}

1{b}

11{c} 12{a}

2{a}

21{a}

s :
ε{e}

1{d} 2{e}

Figure 1: Two labeled trees: t and s.

tas :

ε{b}

1{b}

11{c} 12{e}

121{d} 122{e}

2{e}

21{d} 22{e}

Figure 2: The new tree: tas.

Definition 14. AK-completion structure for ϕ is a tuple 〈T,K,G,C,CT, ST,DJ,EX〉.
K is a set of 2w(ϕ) + |C0| constants, where C0 are the constants appearing in
ϕ and C0 ⊆ K. We will assume K to be such a set throughout this work. T is a
tree which together with the labeling functions C,CT, ST,DJ , and EX is used
to represent/construct a tentative model. G = 〈V,E〉 is a directed graph with
nodes V ⊆ {(x, ψ)|x ∈ T, ψ ∈ SKϕ }, where SKϕ is the set of all (ϕ,K)-relevant
formulas. An edge [(x, ψ1); (y, ψ2)] is to be interpreted as stating that formula
ψ2 in node y is needed to justify ψ1in x. Below the signature and the role for
each labeling function is given.

• The constant function C : T→ 2K maps a node of the tree to a subset
of constants from K. This function tells us which constants are used in
formulas in the label of x.

• The content function CT : T → 2S
K
ϕ maps a node x ∈ T to a set of

(ϕ,C(x))-relevant formulas. The content function and the constant func-
tion are used to construct a (ϕ,C)-type, as occur in the tableaux we de-
fined earlier.

• The status function ST : {(x, ψ)|x ∈ T, ψ ∈ CT (x)} → {exp, unexp}
attaches to every formula in each node a status value which indicates
whether the formula has already been expanded in that node. Formulas

24

need to be justified, which will happen through expanding them. There-
fore it is important to know which formulas still need to be expanded.

• The disjunct function DJ : {(x, ψ)|x ∈ T, ψ ∈ CT (x), ψ = ψ1 ∨ ψ2} →
{1, 2} indicates which part of a disjunct motivates the truth of a disjunc-
tion. If two motivations are possible, one will be chosen nondeterministi-
cally.

• The exist function EX : {(x, ψ)|x ∈ T, ψ ∈ CT (x), ψ = ∃xγ(x) ∧ η(x)} →
{(y, c)|y ∈ T, c ⊆ K} indicates in which node and by which constants an
existential formula is instantiated. When there are several options, the
algorithm will choose one nondeterministically.

An initial K-completion structure for ϕ is a completion structure with T =
{ε}, V = {(ε, ϕ)}, E = ∅, C(ε) = C0, CT (ε) = {ϕ}, ST (ε, ϕ) = unexp and the
other labeling functions undefined for every input.

To see how a completion structure can represent a possible model, one
can use the same method as we defined for tableaux on page 20, whereby
for a node v = (Γ, C) of a tableau the equivalent notions in the language of
completion structures are given by CT (x) = Γ and C(x) = C for a node x in
T . This works because a K-completion structure is basically a finite K-tableau
with extra labeling functions and an extra graphG. In order to deal with theories
that have models with an infinite domain, we will show later on how to extend a
completion structure into an infinite tableau.

We will now give rules for expanding a completion structure - the expansion
rules - and conditions for determining when no more expansion is allowed. Also
we will present some further conditions, in order for a completion structure to
have served its purpose in proving that ϕ is satisfiable. In particular, the expan-
sion rules will built up a completion structure starting from an initial structure by
non-deterministically looking for a justification for every formula it contains. Be-
cause of the guarded nature of our formulas, this justification can take the form
of a tree, or a tableau, as the results in chapter 3 have learned us. However,
although one can check with the automaton AKϕ whether a tableau contains a
correct justification for the initial formula ϕ, it by itself has only a very limited
way of explicitly showing the dependency structure of formulas. Only for ex-
istential formulas one has an idea of how they are justified, namely by adding
a successor node to the node which contains it and making sure it is reduced
in that successor. It’s precisely this lack of internal structure which made it

25

necessary to construct the automata in order to determine satisfiability of a for-
mula. This explains the motivation behind the use of the labeling functions and
the dependency graph with completion structures. Keeping this mind should
facilitate the understanding of the following rules.

4.3.2 Expansion Rules

The expansion rules need to update the completion structure whenever we are
using a φ in a node y in order to justify the presence of some ψ in a node x.13

We will have to insert φ into the content of y, mark it as unexpanded, and add
an edge in the dependency graph between (x, ψ) and (y, φ). More formally we
define the update operation as follows

Definition 15. The operation update((x, ψ); (y, φ)) is short for the following se-
ries of operations:

If φ /∈ CT (y), then CT (y) = CT (y) ∪ {φ} and ST (y, φ) = unexp; also,
V = V ∪ {(y, φ)}and E = E ∪ {(x, ψ); (y, φ)}.

In general, update((x, ψ);β) for a set β, means update((x, ψ); (y, φ)) for
each (y, φ) ∈ β.

Another definition is required to determine the reach of universal formulas,
to be able to interpret a completion structure as a possible model.

Definition 16. For a set of constants c, two nodes x, x′ in T are c-equivalent,
notated x ∼c x

′, if each node z on the path between them is such that c ⊆ C(z).

Expansion Rules Assume we are looking at a pair (x, ψ) such that ST (x, ψ) =
unexp. The expansion rules indicate for each type of formula how to expand it.
They are:

• if ψ = ψ1 ∧ ψ2, then

– update((x, ψ); {(x, ψ1), (x, ψ2)});

– set ST (x, ψ) = exp.

• if ψ = l with l an open literal,

– set ST (x, ψ) = exp.

13Of course only formulas φ can be considered such that const(φ) ⊆ C(y).

26

• if ψ = ±P (c) with P ∈ Def(4), (where +P (c) = P (c) and −P (c) =
¬P (c)), then

– update((x, ψ); (x,±ϕ(c)P));

– set ST (x, ψ) = exp.

• if ψ = ψ1 ∨ ψ2, then

– choose an i ∈ {1, 2};

– set DJ(x, ψ) = i;

– update((x, ψ); (x, ψi));

– set ST (x, ψ) = exp.

• if ψ = ∀xγ(x)⇒ η(x), then

– update((x, ψ); {(x, η(c))|γ(c) ∈ CT (x)});

– update((x, ψ); {(y, ψ)|x ∼const(ψ) y});

– set ST (x, ψ) = exp.

• if ψ = ∃xγ(x) ∧ η(x), then

– if there exists a c such that γ(c) ∧ η(c) ∈ CT (x), then

* set EX(x, ψ) = (x, c);

* update((x, ψ); (x, γ(c) ∧ η(c)));

* update((x, ψ); (x, η(c)));14

* set ST (x, ψ) = exp.

– else, add a new node y ∈ succT (x) to T ;

* select a tuple c ∈ K\C0;

* set EX(x, ψ) = (y, c);

* set C(y) = c ∪ C0 ∪ const(ψ);

* set CT (y) = {γ(c) ∧ η(c)} ∪ {φ|φ ∈ CT (x), const(φ) ⊆ C(y)};

* set ST (y, φ) = exp for all non-universal formulas in {φ|φ ∈
CT (x), const(φ) ⊆ C(y)};15

14This update is added to conform to the possible transitions in the automaton AK
ϕ , besides that

it is redundant.
15These formulas represent the same formulas as their copies in CT (x), so we don’t need to

expand them again. Only universal formulas can impose new constraints.

27

* set ST (y, ψ) = unexp;

* set ST (y, γ(c) ∧ η(c)) = unexp;

* update((x, ψ); (y, ψ);

* set ST (x, ψ) = exp.

Once we have expanded a pair (x, ψ), it can be ignored for the further con-
struction of the completion structure.

Choice Rule Suppose we have an x ∈ T for which none of the ψ ∈ CT (x)
can be expanded anymore, and there’s an atom (open or defined) p(c) ∈ SC(x)

ϕ ,
such that p(c) /∈ CT (x) and ¬p(c) /∈ CT (x). Then, either add p(c) to CT (x)
with ST (x, p(c)) = unexp, or add ¬p(c) to CT (x) with ST (x,¬p(c)) = unexp.

4.3.3 Simple Applicability Rules

Besides rules for expanding the completion structure, there are rules which
restrict the use of the expansion rules.

Definition 17. We will call a node x ∈ T saturated if for all atoms p(c) ∈ SC(x)
ϕ ,

either p(c) ∈ CT (x), or ¬p(c) ∈ CT (x) and none of the ψ ∈ CT (x) can be
expanded anymore.

We impose that no expansions can be performed on a node from T until its
predecessor is saturated.

Definition 18. We call a node x ∈ T blocked if

• it is saturated, and;

• there is an ancestor y of x, y < x, such that CT (x) = CT (y) and C(x) =
C(y);

• for each ψ = ψ1 ∨ ψ2 , it holds that DJ(x, ψ) = DJ(y, ψ).

We call (y, x) a blocking pair and say that y blocks x; we will also refer to
x as a blocked node and to y as the blocking node for a blocking pair (y, x).
Also, we say that x and y are copies of each other. blocked(T) is the set of all
blocking pairs of the completion structure T . We impose that no expansions
may occur on a blocked node, and we delete all nodes from T that are younger
than blocked nodes. Likewise we delete all nodes and edges containing these
nodes in G.

28

The goal of a completion structure is to give a finite representation of a
possibly infinite model. We shall end up with a finite tree T , which will serve
as a concise representation of an infinite tree Text in the following sense: Text
is entirely made up of subtrees of T , some of which will re-occur an infinite
amount of times. The idea is that although a model of ϕmight require an infinite
justification, this justification will be built up of finite patterns that keep coming
back. Intuitively this assumption is motivated by the fact that the number of
ϕ-relevant formulas and the connections that hold between them is finite, so
that any infinite justification must be a repetition of the same dependencies
between a set of formulas for different sets of domain elements. Formally we
shall vindicate it in our proofs in chapter 6.

Definition 19. For a graph F = 〈VF , EF 〉 and a set S of pairs of nodes from T ,
we define the closure of F by S, denoted FS = 〈VFS

, EFS
〉, as the result of the

following operations:

• EFS
= EF \{[(z, ψ1); (x, ψ2)]|∃v ∈ T : (v, x) ∈ S ∨ (v, z) ∈ S};

• EFS
= EFS

∪{[(z, ψ1); (v, ψ2)]|∃x ∈ T : (v, x) ∈ S, [(z, ψ1); (x, ψ2)] ∈ EF };

• EFS
= EFS

∪{[(v, ψ1); (z, ψ2)]|∃x ∈ T : (v, x) ∈ S, [(x, ψ1); (z, ψ2)] ∈ EF };

• VFS
= VF \{(x, ψ)|(x, ψ) ∈ VF ,∃v : (v, x) ∈ S}.

Informally the closure of F by S is formed by removing reference to nodes x
which figure on the right side of a couple in S, and replace it everywhere with
the nodes v that figure on the left side of each such couple.

We defined this concept to introduce the next one:

Definition 20. For a node y ∈ T , we define its y-graph as the graph Gy which
can be constructed as follows:

• If there exists no node x so that (y, x) ∈ blocked(T), Gy = ∅.

• We denote the set of all nodes in T [y] that occur before the blocked
nodes or on a branch without a blocked node as TLy, i.e. TLy = {x|x ∈
T [y],∀w ∈ T [y] : (y, w) ∈ blocked(T)⇒ w ≮ x}.

• Take from G only those nodes and edges containing the nodes in TLy,
we name the resulting graph G′y.16

16So G′
y is the dependency graph for the subtree T [y]. This is because we want to simulate the

dependencies that hold if we were to replace every blocked node with the subtree T [y], and then
in turn replace all new copies of blocked nodes again with T [y], and so on.

29

• Define Gy as the closure of G′y by {(y, x)|(y, x) ∈ blocked(T)}.

To find out whether an y-graph is suitable, we introduce the following condi-
tion.

Definition 21. A graph G is cycle-free if either G = ∅, or if there are no cycles
in G containing a positive defined atom. For a node y ∈ T , if its y-graph Gy is
cycle-free, we will call y and T [y] cycle-free as well.

At a certain point no further expansion will be possible, since eventually
each branch will either require no further expansion or it will contain a blocked
node. We then transform the directed graph G by creating the closure of G by
blocked(T). We will refer to this operation as the closing rule, and after it has
been applied we will refer to the closure of G by blocked(T) simply as G.

The effect of this transformation will be that all references to the blocked
nodes are deleted, and the edges to nodes (nodes from V , which are couples
made up of a node and a formula)17 containing it are replaced by edges to the
associated nodes containing its blocking node. It’s important to note that the
closing rule makes sure that all edges which occur in a cycle-free Gy also end
up in G, and that vice versa all edges in G added by the closing rule appear as
well in some Gy. Therefore G is cycle-free iff all nodes y are cycle-free.

Definition 22. A simply complete K-completion structure for ϕ is a comple-
tion structure that results from applying the expansion rules to the initial K-
completion structure for ϕ, taking into account the simple applicability rules,
the delete rule and the closing rule such that no rules can be further applied.

Further, a node x could never correspond to a set of true formulas in a
model if there is an atom p(c) such that p(c) ∈ CT (x) and ¬p(c) ∈ CT (x).
A complete completion structure for which there is such a node and atom is
called contradictory. Putting all this together, we say a completion structure T
is simple clash-free if (1) T is simply complete, (2) T is not contradictory, and
(3) G is cycle-free.

4.4 Completeness

In the next chapter we will develop a more general algorithm, which will have
more complex applicability rules. It will become clear that every simple clash-
free completion structure also is a clash-free structure. Therefore termination

17Nodes can be elements of T , but the graph G also contains nodes, which are of the form
(x, ψ). The context will make clear which kind of nodes are meant.

30

and soundness of our approach for simple clash-free structures will be implied
by the corresponding results for clash-free completion structures. So granted
that these results will be established, we only need to prove the completeness
of our procedure.

Theorem 23. Completeness: If T is a simple guarded FO(ID) theory, and ϕ is
satisfiable, then there is a simple clash-free K-completion structure for ϕ.

Proof. Let S |= ϕ. We fix a well-founded induction (να)α<β in S |Op(∆). We
construct a simple clash-free K-completion structure T and, for each node x in
T , a valuation χx for C(x), while preserving the invariant that S, χx |= CT (x):

• The root is the initial completion structure for ϕ.

• We apply the algorithm for expanding a completion structure, where we
take into account the following:

– if ψ = ψ1 ∨ ψ2, then choose an i ∈ {1, 2} such that |ψχx,i| =
min{|ψχx,1|, |ψχx,2|};

– if ψ = ∃xγ(x) ∧ η(x), then consider the non-empty set of tuples
d ⊆ dom(S) for which S, χx |= γ [d] ∧ η[d], and select from this a
tuple d with minimal |γχx

(d) ∧ ηχx
(d)|.

* add a new node y ∈ succT (x) to T ;

* select a tuple c ⊂ K\C0 of fresh constants;

* the valuation χy coincides with χx on const(ψ)∪C0 and maps c

to d. This clearly preserves the invariant.

– when applying the choice rule, always add literals l(c) so that S, χx |=
l(c).

It is clear that our structure can be simply completed, as any structure can. It
is also clear that it is non-contradictory. So what remains to be shown is that T
is cycle-free.

We will start by proving that a certain kind of cycle cannot occur. Assume
there is a cycle in G containing a positive defined atom P (c) such that the cy-
cle does not contain an edge that was created by an application of the clos-
ing rule. Thus there is a sequence of connected nodes (mi, ψi)i∈[a,b] with
ψa = ψb = P (c) and ma = mb. Assume χma

(c) = d. Observe that T is
so constructed that, up until the nodes which were predecessors of blocked

31

nodes (the nodes that were cut off by applying the closing rule), the depen-
dency graph G represents the actual dependencies of formulas in S. More
formally, this can be expressed by the following property:

Proposition 24. Given that S and T are as above, then it holds that for any
[(x, α); (y, β)] ∈ E which was not the result of applying the closing rule, |αχx

| ≥
|βχy
|.

Proof. This is a direct result of our choice of expanding the completion struc-
ture, and lemma 10.

By considering the expansion rule for defined atoms, we know that ma+1 =
ma and ψa+1 = ϕP (c). On the other hand, the semantics of FO(ID) dictate that
|P [d]| < β ⇒ |P [d]| > |ϕP [d]|, i.e., a defined atom can only become true if the
truth of its defining body is already known to be true. We know that |P [d]| < β,
since S, χma

|= P (c). But together with the above proposition this leads to the
contradiction |ψχma ,a

| > |ψχma ,a+1| ≥ |ψχma ,a
|. Therefore we conclude that

there is no cycle in G containing a positive defined atom which doesn’t contain
an edge that exists due to the closing rule.

Now assume there is a cycle in G containing a positive defined atom P (c)
which contains an edge that exists due to the closing rule. We will go through
the cycle, starting from the node (x, (P (c)) for some node x. The first edge
needs to be [(x, (P (c)); (x, ϕP (c))]. The node (x, ϕP (c)) is then further con-
nected to a node with a subformula of ϕP (c), that can take three different forms:

1. either it is of the form ±Q(d) with Q ∈ Op(4),

2. or it is a quantified formula,

3. or it is of the form ±Q(c) with Q ∈ Def(4).

In the first case the path has to stop, since open atoms aren’t expanded. So
this is impossible.

In the second case, remark that a quantified formula that occurs in the body
of a defined predicate cannot contain a positive defined predicate, due to the
restriction on the marked predicate dependency graph. The reduction of a
quantified formula always has to end in a node (y,±R(d)). If R /∈ Def(4) we
end up in the first case, so R ∈ Def(4). Therefore the occurrence of R is neg-
ative: the node is of the form (y,¬R(d)). Because T is stratified, S(P) > S(R).
It is clear from the expansion rules that for any path (a,±A(v)) 7→ (b,±B(w))

32

with A,B ∈ Def(4), it holds that S(A) ≥ S(B). Combining this with the fact
that G contains the path (y,¬R(d)) 7→ (x, P (c)), we obtain the contradiction
S(P) > S(R) ≥ S(P).

This leaves us with the third possibility, namely that we reach a node (x,±Q(c)),
with Q ∈ Def(4). If the node is (x,¬Q(c)), the previous argument applies, so
it must be of the form (x,Q(c)). This situation is entirely similar to our starting
point, so by the same reasoning the cycle must connect this node to a node
(x,R(c)), with R ∈ Def(4), without there occurring any quantified formulas in
between. This continues until finally we end up in (x, (P (c)) again. The only
expansion rules that allow one to move from one node of T to another, are
those relating to quantified formulas. Therefore the cycle remains in the node
x throughout. But any edge that was added due to the closing rule is an edge
connecting different nodes from T , so again we obtain a contradiction.

From this we conclude that G is cycle-free, and thus that our completion
structure is simple clash-free.

33

5 A Reasoning Procedure for Guarded FO(ID)

5.1 Completion Structures

To develop the more general reasoning procedure for the whole fragment of
guarded FO(ID), we need to adapt the applicability rules for deciding when a
completion structure is completed. Thus the structures themselves are built up
with the same tools as was the case for simple guarded FO(ID), but in general
it will require more expansions to obtain a structure that can represent a tree-
shaped model of a theory.

5.1.1 Applicability Rules

The first requirement we make is that all expansions occur breadth-first. This is
important to avoid infinitely expanding on a single branch because of a problem
that occurs in another branch which we never get to expanding. This shall
become clearer when we consider cycles.

The notions of a saturated node and a blocked node remain as before, and
likewise we impose that no expansions can be performed on a node from T

until its predecessor is saturated. The next definition presents a new concept
that was of no use in the simple case.

Definition 25. If for a node x it holds that (y, x) ∈ blocked(T) ∧ [¬∃z ∈ T :
x < z ∧ (y, z) ∈ blocked(T)], we shall say that (y, x) ∈ lastblocked(T) and x

is last-blocked by y. Of course a pair may go from being lastblocked to just
blocked if new copies of y are added later on.

To predict which justifications will exist in the extended tree Text, we look at
suitable subtrees in T which are possible candidates for re-occuring an infinite
amount of times. In those trees we connect certain end-nodes to nodes which
in Text will be the roots of a next copy of a subtree, by connecting the corre-
sponding node-formula pairs in G. In this manner cycles are created, which
represent infinite justificatory/dependence paths in Text. If such a cycle con-
tains a positive defined atom we know that this attempt at justification will never
succeed, since the semantics of FO(ID) does not allow for a positive defined
atom to depend on an infinite number of positive defined atoms. Hence the
following definitions.

Definition 26. For a node y ∈ T , we define an y-tree as a tree Ty which can

34

be constructed by cutting of each branch of T [y] at some node z in such a way
that either (y, z) ∈ lastblocked(Ty), or ¬∃x ∈ T : (y, x) ∈ blocked(T) ∧ z < x.

We now define a more general version of an y-graph.

Definition 27. For a node y ∈ T and an y-tree Ty, we define an y-graph as a
graph Gy which can be constructed as follows:

• If there exists no node x so that (y, x) ∈ blocked(T), Gy = ∅.

• For every node x such that (y, x) ∈ lastblocked(Ty), choose a v ∈ Ty

so that (y, v) ∈ blocked(Ty), (y, v) /∈ lastblocked(Ty) or v = y; we denote
the set of all such pairs as Sy. Further, we denote the set of all nodes
in Ty that occur before the lastblocked nodes or on a branch without a
lastblocked node as TLy, i.e. TLy = {x|x ∈ Ty,∀w ∈ Ty : (y, w) ∈
lastblocked(Ty)⇒ w ≮ x}.

• Take from G only those nodes and edges containing the nodes in TLy,
we name the resulting graph G′y.18

• Define Gy as the closure of G′y by Sy.

Some cycles in a y-graph Gy containing positive defined predicates can
cause problems, because they might represent an infinite justification for a de-
fined atom which keeps decreasing in truth-level. To separate those that are
problematic from those that aren’t, we have the following definition.

Definition 28. A cycle (xi, ψi)i∈[k,l] in a graph FS that is the closure of F by S
containing a positive defined atom is harmless if all of the following holds:

• It contains an edge [(xj , ψj); (xj+1, ψj+1)] which isn’t part of F , i.e. there
is a couple (xj+1, y) ∈ S and xj is the predecessor of y;

• It contains an edge [(xm, ψm); (xm+1, ψm+1)] so that xm = xj+1 and
xm+1 < xm;

• The part of the cycle in between these two edges doesn’t contain another
edge which isn’t part of F .

18So G′
y is the dependency graph for the subtree Ty with all nodes younger than a lastblocked

node cut off. This is because we want to simulate the dependencies that hold if we were to replace
every lastblocked node with the subtree starting at its corresponding node on the left of a couple
in Sy , and then in turn replace all new copies of lastblocked nodes again with the corresponding
subtree, and so on. Therefore all nodes younger than lastblocked nodes are irrelevant for this test.

35

Ty :

y

e

v1

a

x1

b

x2

g f

v2

c

x3

d

x4

Figure 3: The y-tree Ty.

A harmless cycle is harmless because it doesn’t represent any dependen-
cies which will occur if the completion structure is extended into an infinite
tableau, as will happen later on.

To illustrate the notions we just introduced, consider the example in Figures
3 and 4.

We are trying to find out whether Ty can be extended into an infinite tree
which consists of subtrees Ty[v], with (y, v) ∈ blocked(T) or v = y. Take it that
{y, v1, v2, x1, x2, x3x4} are all copies of each other. So we look for a suitable y-
graph, which means that for every lastblocked node in {x1, x2, x3, x4} we have
to choose a node in {y, v1, v2}. Let’s say we choose

Sy = {(v1, x1); (v1, x3); (v2, x2); (v2, x4)}

This choice is a simulation of the extended tree Ty,ext that results from replacing
every xi with Ty[vi], for which the first replacement is shown in Figure 4.

The newly created nodes {x′1, x′2, x′3, x′4, x′′1 , x′′2 , x′′3 , x′′4} will be the subject
of the next replacement, and so on. Rather than actually applying this infi-
nite sequence of extension operations, we simulate which dependencies would
hold by creating Gy. It is with this in mind that the harmless criterion should
be understood: a cycle which contains both an edge, say [(a, α); (v1, ν1)] and
[(v1, ν1); (e, η)], does not represent actual dependencies in the extended tree
as can be seen in Figure 4, since only v′1 is connected to a and only v1 is
connected to e. The third criterion serves to deal with more complex exam-
ples, where copies of the edge [(v1, ν1); (e, η)] would occur in the extended tree
as well and could be connected to a copy of [(a, α); (v1, ν1)] by going through

36

Ty,ext :

y

e

v1

a

v′1

a′

x′1

b′

x′2

b

v′2

c′

x′3

d′

x′4

g f

v2

c

v′′1

a′′

x′′1

b′′

x′′2

d

v′′2

c′′

x′′3

d′′

x′′4

Figure 4: The situation we want to simulate.

another edge that was created by the closure operation.
To find out which choices of y-trees and y-graphs are suitable, we introduce

a modified version of cycle-freeness, which will be important to establish when
we can stop expanding on copies of a node y.

Definition 29. A graph G is cycle-free if either G = ∅, or if the only cycles in
G containing a positive defined atom are harmless. For a node y ∈ T , if there
exists an y-tree Ty for which there exists an y-graph Gy that is cycle-free, we
will call y and Ty cycle-free as well.

We define a set safe(T), which initially is empty. Whenever we encounter
a cycle-free node y, and a corresponding cycle-free y-tree and y-graph Gy, we
add Sy to safe(T). We call every pair (v, x) ∈ safe(T) safe, x is safely blocked
and v is safely blocking x. The following conditions decide when the expansion
of a node is terminated:

• Whenever we encounter a new blocking pair (y, x), i.e. there is no other
branch yet containing two copies of y, we choose a number ny.19

19This number is limited by a maximum value ny,MAX , which can be calculated using charac-
teristics of the theory T . As we noted earlier, at his point we have failed to proof the completeness
of our procedure. The obstacle in our proof is precisely that we have not yet found a method for
effectively determining this value. However, in practice, small values of ny will be sufficient for most
theories.

37

• If a node y is blocking ny nodes, then we impose that no more expansions
can be performed on T . We will say that T is failed, and the algorithm
terminates.20

• If a node x occurs as a last-blocked node in a cycle-free y-tree Ty, we
impose that no more expansions can be performed on x as long as y

remains cycle-free. Note that this ensures the uniqueness of the cycle-
free y-tree and y-graph Gy.21

At a certain point no further expansion will be possible,22 we then adapt the
structure for each safely blocked node x by the following delete rule:

• T = T\{z|z ∈ T, x < z};

• V = V \{(z, ψ)|z ∈ T, ψ ∈ SKϕ , x < z};

• E = E\{[(z, ψ1); (z′, ψ2)]|z, z′ ∈ T, ψ1, ψ2 ∈ SKϕ , x < z ∨ x < z′}.

In other words, we delete all references to nodes younger than the safely
blocked nodes.

In addition to this, we transform the directed graph G by creating the closure
of G by safe(T). We will refer to this operation as the closing rule, and after
it has been applied we will refer to the closure of G by safe(T) simply as G.
Also, since for every y ∈ T there is exactly one cycle-free y-graph Gy and
corresponding Ty, from now on when we speak of the Gy for a cycle-free node
y, we are talking about the unique cycle-free y-graph.

The effect of this transformation will be that all references to the safely
blocked nodes are deleted, and the edges to nodes (nodes from V , which
are couples made up of a node and a formula)23 containing it are replaced by
edges to the associated nodes containing its safely blocking node. It’s impor-
tant to note that, because safe(T) =

⋃
y∈T Gy, the closing rule makes sure

that all edges which occur in a cycle-free Gy also end up in G, and that vice
versa all edges in G added by the closing rule appear as well in some Gy.

20This is why the breadth-first requirement is important. If we went depth-first, it could happen
that no ny is large enough, since the cycle preventing cycle-freeness occurs due to another branch
which we never get to.

21There may be multiple choices within Ty to create a cycle-free Gy , but for only one of them the
set Sy is added to safe(T).

22Even if there remain last-blocked nodes that aren’t blocked by a cycle-free node, eventually
there will be a node y blocking ny nodes, since there are only a finite amount of different nodes.

23Nodes can be elements of T , but the graph G also contains nodes, which are of the form
(x, ψ). The context will make clear which kind of nodes are meant.

38

Definition 30. A complete K-completion structure for ϕ is a non-failed com-
pletion structure that results from applying the expansion rules to the initial
K-completion structure for ϕ, taking into account the applicability rules, the
delete rule and the closing rule such that no rules can be further applied.

The graph G is meant to show the dependency relations between formulas.
An edge between pairs (x, ψ) and (y, φ), can be interpreted as saying that the
truth of the occurrence of ψ in x depends on the truth of the occurrence of φ
in y. A set C(x) ⊂ K occuring in T can correspond to an infinite number of
“similar” domain elements in a model for which G represents the dependency
graph, so any cycle in G from a node (x, P (c)) - with P ∈ Def(4) - to itself can
be interpreted as stating that the truth of every P (d) depends on the truth of
a P (e), where d and e are domain elements corresponding to c in the manner
explained on page 20. Such dependencies pose a problem for the satisfiability
of ϕ, since they are to be interpreted as stating that there is a positive defined
atom that depends on an infinite amount of other positive defined atoms for
which the same holds. Just as the automaton AKϕ doesn’t allow an infinite play
to pass a state for a positive defined atom an infinite amount of times, the graph
G of a completion structure needs to be cycle-free.

Putting all this together, we say a completion structure T is clash-free if (1)
T is complete, (2) T is not contradictory, and (3) G is cycle-free.

5.1.2 An example of the reasoning procedure at work.

To illustrate the working of the algorithm, we now give a simple example. The
example has an additional value, in that it also illustrates the difference in se-
mantics between FO(ID) and OASP. The corresponding theory for OASP was
discussed on page 7.

Consider the theory given by:∀x : P (x)← ¬Q(x)

∀x : Q(x)← ¬P (x)

ϕ = ∃x : P (x) ∧ >

In FO(ID) this theory is unsatisfiable, from which we conclude that ∀x :
¬P (x) is entailed by every model, i.e. the extension of P has to be empty in

39

ε

1

Figure 5: The tree T .

(ε,∃x : P (x)) +3 (1,∃x : P (x))

Figure 6: The dependency graph G, 1.

every model.24 An intuitive argument for this is that every P (c) requires the
negation of another defined predicate, Q(c), which in turn requires P (c) to be
true. Therefore the truth of P (c) depends on itself. But the semantics of FO(ID)
dictate that the body ϕP (c) becomes true before P (c), or in the terminology of
page 19, |P (c)| ≤ β ⇒ |P (c)| > |ϕP |, where β stands for the limit of a well-
founded induction (να)α≤β for 4. This leads to the conditional |P (c)| ≤ β ⇒
|P (c)| > |¬Q(c)| ≥ |P (c)|, from which it follows that |P (c)| > β, i.e. |¬P (c)| < β.

Now let’s have a look at how our reasoning procedure tackles this example.
We start out with the initial completion structure T = {ε}, V = {(ε, ϕ)}, E = ∅,
C(ε) = ∅, CT (ε) = {ϕ}, ST (ε, ϕ) = unexp and the other labeling functions
undefined. The first step is expanding (ε, ϕ). This creates a successor of ε, 1.
The tree T is depicted in Figure 5.

Further, we choose a constant c, we change the status of (ε, ϕ) to exp, and
update the exist function to EX(ε, ∃x : P (x)) = (1, c). At the same time we fill
in the labels for 1: C(1) = {c}, CT (1) = {∃x : P (x);P (c)}, ST (1,∃x : P (x)) =
unexp and ST (1, P (c)) = unexp. The update operation changes G to Figure
6.

Now ε is saturated, so we may expand (1,∃x : P (x)). This means we set
EX(1,∃x : P (x)) = (1, c), change the status to expand, ST (1,∃x : P (x)) =
exp, and update G, which gives Figure 7.

This leaves (1, P (c)) to expand. We add ϕP (c) to the content, CT (1) = {∃x :
P (x);P (c);¬Q(c)}, set ST (1, P (c)) = exp and ST (1,¬Q(c)) = unexp. Also, we

24We have to insert a tautology (>) in ϕ because of the syntactical rules for Guarded FO(ID), but
it obviously has no effect.

40

(ε,∃x : P (x)) +3 (1,∃x : P (x)) // (1, P (c))

Figure 7: The dependency graph G, 2.

(ε,∃P (x)) +3 (1,∃P (x)) // (1, P (c)) // (1,¬Q(c))

Figure 8: The dependency graph G, 3.

update G, leading to Figure 8.
Finally, we expand (1,¬Q(c)). There’s no need to add ¬ϕQ(c) to CT (1),

because it’s already present as P (c). So the only action to take is to update
the graph and set ST (1,¬Q(c)) = exp. This results in the dependency graph
in Figure 9.

There are no more unexpanded formulas left, and the choice rule cannot
be applied either, so 1 is saturated as well. This means that the algorithm
terminates. Remark that we didn’t make any choices, so this application of the
algorithm was completely deterministic. However, we see that G isn’t cycle-
free, so we conclude that the theory is unsatisfiable.

(ε, ∃P (x)) +3 (1,∃P (x)) // (1, P (c)) // (1,¬Q(c))
||

Figure 9: The dependency graph G, 4.

41

6 Satisfiability and Completion Structures

6.1 Introduction

We will now establish a connection between clash-free completion structures
for ϕ and models of ϕ. If a complete completion structure is not contradic-
tory, each pair (CT (x), C(x)) is a (ϕ,C(x))-type. Therefore, when we ignore
the other labeling functions and the graph G, a non-contradictory complete K-
completion structure for ϕ can be seen as a finite K-tableau for ϕ, as defined
on page 17. This will allow us to create a link between completion structures
and tableaux.

We proceed to show three results, of which the third still remains unfinished,
which together constitute a correspondence between models of ϕ and clash-
free completion structures for ϕ:

1. Termination: an initial K-completion structure for ϕ can always be ex-
panded to a complete completion structure;

2. Soundness: if there is a clash-free K-completion structure for ϕ, ϕ is
satisfiable;

3. Completeness: if ϕ is satisfiable there is a clash-free K-completion struc-
ture for ϕ.

6.2 Termination

Theorem 31. Termination: One can always construct a finite complete K-
completion structure for ϕ by a finite number of applications of the expansion
rules to the initial K-completion structure for ϕ, taking into account the applica-
bility rules, the delete rule and the closing rule.

Proof. Assume one has a finite completion structure which is not yet complete.
If no more successors are introduced, each node can be saturated by applying
the expansion rules a finite amount of times. However, the process of introduc-
ing successors will stop after a finite number of applications, since for every
node y we have the restriction that if it is blocking ny nodes we can no longer
expand on it. There are only a finite amount of different nodes, and every ny is
finite. Further, the arity of the tree is limited by the maximum number of differ-
ent (ϕ,K)-relevant existential formulas, thus there will be only a finite number
of (finite) paths.

42

6.3 Soundness

In section 3 we constructed a 2ATA AKϕ for ϕ such that an accepted tableau of
AKϕ can be transformed into a model which satisfies ϕ, and it was shown that
every model of {4, ϕ} can be transformed into an accepted tableau of AKϕ .
Our claim is that if there exists a model of {4, ϕ} we can construct a clash-free
completion structure, and that, vice versa, a clash-free completion structure
can be extended into an accepted tableau and thus into a model. So the exist-
ing results for guarded FO(ID) together with the proofs presented here, suffice
to derive the soundness and completeness of the reasoning procedure.25

First we need to transform the completion structure into its extended tableau.

Definition 32. For a complete completion structure T we define its extended
tableau Text, as a K-tableau for ϕ as introduced on page 17 which is the result
of the following series of operations.

Given a set of n symbols Σ, where n is the number of nodes in T , define a
one-to-one labeling function on T (and with it a labeled tree): t : T → Σ which
assigns to every node of T a symbol from Σ.

In case blocked(T) = ∅, Text = T . Otherwise, repeat the following an infi-
nite number times: for every (y, x) ∈ safe(T) do tt(x)t[y] (every safely blocked
node is replaced with the subtree starting at the safely blocking node). After
each iteration new nodes (or only one) are created which will be the subject of
the next transformations. The resulting tree is Text.

We observe that ∀x ∈ Text,∃!y ∈ T : t(x) = t(y), i.e., for every node in the
constructed tree exactly one node in the original tree exists that has the same
label; we denote such y for x as x. Given the way Text was constructed (by
concatenation of subtrees from T), either x = x or x ∈ T ′, with T ′ ⊂ Text being
a version of a subtree of T in Text, T [z], where z is a safely blocking node in T ,
and x ∈ T [z]. Being a version of each other, implies that T ′ and T [z] have the
same tree structure. For x ∈ T ′, x ∈ T [z], and t(x) = t(x), one could say that
x is the counterpart of x in T ′.26 Considering this, we can extend the labeling
functions as well, in the following manner:

• C(x) = C(x),

• CT (x) = CT (x),

25Given of course that the completeness proof can be finished.
26Note that a safely blocked node cannot have a counterpart.

43

• for every disjunct ψ = ψ1 ∨ ψ2 ∈ CT (x) : DJ(x, ψ) = DJ(x, ψ),

• for every existential formula ψ = ∃xγ(x) ∧ η(x) ∈ CT (x) : EX(x, ψ) =
(y, c), such that EX(x, ψ) = (y, c).

Next we prove a theorem that allows us to move from clash-free completion
structures to accepted tableaux. In this way we can rely on already established
results to prove soundness.

Theorem 33. If T is a clash-free K-completion structure for ϕ, its extended
tableau Text will be accepted by AKϕ .

Proof. We need to show that there exists a winning strategy for Text. We pick
a strategy f as follows. (Recall that nodes v in tableaux are in general not
named, and therefore denoted as a pair of a type and a set of constants. Since
in Text we do have names, and labeling functions, we will abuse notation and
refer to v as if we were referring to its name x. Thus, for each v = (Γ, C),
Γ = CT (x) and C = C(x).)

• For every ψ = (v, ψ1 ∨ ψ2), f selects ψDJ(v,ψ).

• For every ψ = (v,∃xγ(x) ∧ η(x)), with v = (Γ, C) and ∃xγ(x) ∧ η(x) ∈ Γ,

– ifEX(v, ψ) = (v, c) for some c, f selects the move such that f(v, ψ) =
(v, η(c));

– if, on the other hand, EX(v, ψ) = (w, c) for some c, it selects the
move such that f(v, ψ) = (v, ψ). (By construction of T , it’s always
true that one of these will be the case.)

The proof consists of several stages. First we shall provide a connection be-
tween the states of a losing play p that follows our strategy f , and the labels
of the nodes in Text. Secondly we reason from such a losing play towards
the existence of a certain kind of sequence. Thirdly we prove a lemma which
provides a connection between the transitions between states of a losing play
following f , and edges in the graph G. Finally, we will use this lemma to prove
that the said sequence cannot exist, which in turn shows that any play following
f has to be winning.

Lemma 34. If a losing play p that follows f reaches a state (v, ψ), with v =
(Γ, C), then const(ψ) ⊆ C and ψ ∈ Γ.

44

Proof. We will prove this by induction. The root provides the base case. For
the induction step, assume that the property holds for (v, ψ) and let p(v, ψ) =
(v′, ψ′) with v′ = (Γ′, C ′).

• If ψ is a conjunction or an open literal, the result is trivial.

• Suppose ψ = ψ1 ∨ ψ2. By the induction hypothesis, there is an i ∈
{1, 2} for which ψi ∈ Γ. By the choice of our strategy, we therefore have
that ψ′ = ψi, (unless of course {ψ1, ψ2} ⊆ Γ, and f chooses the other
disjunct), Γ′ = Γ and thus ψ′ ∈ Γ′.

• Suppose ψ = ∃xγ(x). Our choice of strategy preserves the invariant.

• Suppose ψ is a defined literal P (t) or ¬P (t). Then v′ = v and ψ′ = ϕP (t)

or, respectively, the negation normal form of ¬ϕP (t). Because Γ is a type,
it follows directly from the induction hypothesis that ψ ∈ Γ′.

• Suppose ψ = ∀xγ(x)⇒ η(x). We distinguish two cases:

– Assume ψ′ = ψ, v′ 6= v. If const(ψ) * C ′, then the play is win-
ning. We can therefore assume that const(ψ) ⊆ C ′. The result then
follows from the induction hypothesis and the expansion rules.

– Assume v = v′ and ψ′ = η(c) for some c such that γ(c) ∈ Γ, it then
follows from the induction hypothesis that η(c) ∈ Γ′.

We now show that the play p is winning. Assume that it is losing.
If it is finite, it must either end in f , or t, or end with a universal formula

whose constants are not part of its label. In the first case, the previous state
was (v, L(c)) for some open literal L(c). Since the play ends in f , it is losing.
Thus L(c) /∈ Γ, where v = (Γ, C). This contradicts the property stated above,
so p cannot end in f . The latter two cases are winning, thus the play is infinite.

We distinguish two cases. First, assume that some quantifier is not re-
duced. By definition of our strategy, each existential quantifier is reduced, so
it must be a universal one, in which case the play is winning. Second, as-
sume that some defined literals are regenerated infinitely often. If these are
all negative literals, the play is winning. Assume therefore that there is some
positive atom P (t) among them. Let (vi, ψi)i≥0 be the infinite sequence of
states reached by the play, such that (v0, ψ0) is some state in which ψ0 = P (t)

45

and each (vi+1, ψi+1) is p(vi, ψi). Since P (t) is regenerated infinitely often,
and there are only a finite amount of nodes in T , there exists a subsequence
(vj , ψj)j∈[a,b] of (vi, ψi)i≥0 such that ψa = ψb = P (t) and va = vb.

We will show that the existence of such a sequence is impossible, by using
the following lemma.

Lemma 35. For any infinite losing play p that follows f , it holds that for any two
couples (v, ψ) and (v′, ψ′), if p(v, ψ) = (v′, ψ′) then [(v, ψ); (v′, ψ′)] ∈ E.

Proof. Assume that p(v, ψ) = (v′, ψ′), where p is a losing play that follows f .
We know from the above that, abusing notation, const(ψ) ⊆ C(v), const(ψ′) ⊆
C(v′), ψ ∈ CT (v) and ψ′ ∈ CT (v′). Therefore const(ψ) ⊆ C(v) , const(ψ′) ⊆
C(v′), ψ ∈ CT (v) and ψ′ ∈ CT (v′).

• If ψ = ψ1 ∧ ψ2, then ψ′ = ψ1 or ψ′ = ψ2. The result is trivial by looking at
the expansion rule for a conjunction.

• Suppose ψ = ψ1∨ψ2. Because f selects ψDJ(v,ψ), the result follows from
the expansion rules.

• Suppose ψ = ∃xγ(x)∧ η(x). Then there are two cases to be considered:

– either ψ′ = η(c) for some c, and v′ = v,

– or ψ′ = ψ and v′ 6= v.

In both cases the corresponding choices made by f and the expansion
rules imply the result.

• Suppose ψ is a defined literal P (t) or ¬P (t). Then v′ = v and ψ′ = ϕP (t)

or, respectively, the negation normal form of ¬ϕP (t). The result follows
directly by looking at the expansion rules.

• Suppose that ψ = ∀xγ(x) ⇒ η(x) for some γ and η. The result follows
directly by looking at the expansion rules.

As a result of this lemma, we deduce that the sequence of states (vj , ψj)j∈[a,b]

form a cycle in G containing the defined atom P (t). Since we assumed G to
be cycle-free, this has to be a harmless cycle. We show that this is impossible.

Consider the edge [(c, γ); (d, δ1)] in this cycle which was created by an ap-
plication of the closing rule, i.e. the closure of G by safe(T). This means d is

46

safely blocking the successor of c in T , which implies that c ≮ d. To this corre-
sponds a move p(c, γ) = (d, δ1) of the play, where d is the successor of c in Text
which was created by adding a copy of t[d] in place of the original successor of
c. (Thus d 6= d.)

Now consider the edge mentioned in the second criterion of harmlessness,
[(d, δ2); (e, η)] where e < d. To this corresponds a move p(d′, δ2) = (e, η), where
e is the predecessor of d′. By construction, the play can only leave the current
copy of t[d] by following an edge that was the result of the closing rule. (This
is precisely why the closing rule was introduced: to simulate edges between
different subtrees that are copies of subtrees of T .)27 Thus the third criterion
for harmlessness dictates that d′ is part of the copy of t[d] that took the place of
the original successor of c. Since the labeling function t is one-to-one, d′ = d

implies that d′ = d. The predecessor of d is c, so c = e. But e < d and c ≮ d, so
we obtain a contradiction.

We therefore conclude that such a sequence cannot occur, and each de-
fined atom P (t) can occur at most a finite number of times in p, thus establish-
ing that p is winning.

Corollary 36. Soundness: If there exists a clash-free K-completion structure
for ϕ, then ϕ is satisfiable.

Proof. Theorem 33, together with theorem 12 implies the result.

6.4 Completeness

On the other hand we can transform a model for ϕ into a clash-freeK-completion
structure for ϕ.

Conjecture 37. Completeness: If ϕ is satisfiable there is a clash-free K-
completion structure for ϕ.

Proof. Let S |= ϕ. We fix a well-founded induction (να)α<β in S |Op(∆). We
construct a clash-free K-completion structure T and, for each node x in T , a
valuation χx for C(x), while preserving the invariant that S, χx |= CT (x):

• The root is the initial completion structure for ϕ.
27To be entirely accurate: at least one of the subtrees is a copy of a subtree of T .

47

• We apply the algorithm for expanding a completion structure, where we
take into account the following:

– if ψ = ψ1 ∨ ψ2, then choose an i ∈ {1, 2} such that |ψχx,i| =
min{|ψχx,1|, |ψχx,2|};

– if ψ = ∃xγ(x) ∧ η(x), then consider the non-empty set of tuples
d ⊆ dom(S) for which S, χx |= γ [d] ∧ η[d], and select from this a
tuple d with minimal |γχx

(d) ∧ ηχx
(d)|.

* add a new node y ∈ succT (x) to T ;

* select a tuple c ⊂ K\C0 of fresh constants;

* the valuation χy coincides with χx on const(ψ)∪C0 and maps c

to d. This clearly preserves the invariant.

– when applying the choice rule, always add literals l(c) so that S, χx |=
l(c).

– whenever we encounter a new blocking pair (y, x), we provisionally
choose ny = 2.

– whenever we run into an unsafe pair (y, x), we provisionally set ny =
ny + 1.

It is clear that our structure is not failed by construction. It is also clear that it is
non-contradictory. The structure can be completed if every ny is finite, so what
remains to be shown is that ny is finite for every y28 and T is cycle-free. We
have as yet not found a way to determine a maximum value for ny, so this part
of the proof will remain unsettled. We do present a method that shows how
one could go about finding such a maximum. More specifically, we consider
the case where T consists of one branch and suggest how this method could
be generalized. Lastly, we will prove that G is cycle-free.

Recall from page 32 that there is no cycle in G containing a positive defined
atom which doesn’t contain an edge that exists due to the closing rule.29 This
result can easily be extended to a v-graph Gv for some node v: there is no
cycle in Gv containing a positive defined atom which doesn’t contain an edge
that exists due to the closure of G′v by Sv. This holds because every such cycle
appearing in Gv would consist entirely of edges in E that weren’t the result of

28for which a ny is defined, of course.
29This result didn’t depend on the applicability rules being simple or not, so it holds in this context

as well.

48

the closing rule. From this we learn that, if a node v is not cycle-free, there has
to be a non-harmless cycle containing a positive defined atom in every v-graph
Gv for every v-treeTv, that contains an edge which was added by taking the
closure of G′v by Sv.

From the expansion rules it’s clear that only universal and existential formu-
las can occur in edges between different nodes of T , and it’s a consequence of
the previous argument that a cycle preventing cycle-freeness must visit more
than one node. Therefore such a cycle contains a pair (x,D) where D is a
universal or existential formula for each node x that it passes. We will focus on
these pairs.

Assume there is a node x ∈ T for which nx is infinite.30 We attempt to prove
that this is impossible.

For reasons of simplicity, let’s assume that there are only two existential or
universal formulas in CT (x), A and B. The argument can be generalized to
any number of such formulas.

We consider a very restricted case only, namely when T consists of only
one branch. The node x is not cycle-free if for every x-tree Tx there ex-
ists no x-graph which is cycle-free, i.e. which is either empty or for which
all cycles containing a positive defined atom are harmless. All x-trees are
given by all finite branches starting at x and ending in some copy z of x, so
lastblocked(Tx) = {(x, z)}. For a given x-tree Tx, the possible sets Sx for an
x-graph Gx are all of the form Sx = {(y, z)}, where y = x or (x, y) ∈ blocked(T)
and y < z. Every such x-graph must contain a non-harmless cycle containing
a positive defined predicate that contains an edge which was added by taking
the closure of G′x by Sx, i.e. an edge [(v, α); (y, β)] such that v is the predeces-
sor of z (or an edge [(y, β); (v, α)]), where β is either A or B. The rest of the
cycle thus consists of a path (y, β) 7→ (v, α). There are only six possible forms
this path can take, as can be seen from Figure 10.

Now because this has to hold for every x-tree and x-graph, we know that
in between every two copies y and z of x where y < z, one of the following six
patterns must occur:

1. There is a path containing a positive defined predicate (y,A) 7→ (z,A).

2. There is a path containing a positive defined predicate (y,B) 7→ (z,B).

3. There is a path containing a positive defined predicate (y,A) 7→ (z,B),

30Without loss of generality we may take x to be first copy of x in T .

49

(y, β)

�� ��

(y, β)

����

(y, γ)

��

(y, β)

++
��

(y, γ)

yy

(w, η)

��

JJ

(v, α)

��

BB

��

�
4

(v, α)

HH

��

�
4

��

(v, δ)

VV

��

4
�

(v, α)

��

KK

		

h
x

(z, β)

[[

�
4

(z, β) (z, γ) (z, β) (z, γ)

kk

1
E

V

Figure 10: Possible cycles. The dashed lines are edges before the closing rule,
the full lines are edges after the closing rule. β and γ are either A or B. The
left tree represents patterns 1 and 2, the middle tree represents 3 and 4, and 5
and 6 are shown in the right tree.

and a path (y,B) 7→ (z,A).

4. There is a path containing a positive defined predicate (y,B) 7→ (z,A),
and a path (y,A) 7→ (z,B).

5. There is a path containing a positive defined predicate (y,A) 7→ (y,B),
and a path (z,B) 7→ (z,A).

6. There is a path (y,A) 7→ (z,B), and a path containing a positive defined
predicate (z,B) 7→ (z,A).

We will attempt to prove that an infinite branch T containing an infinite amount
of copies of x that satisfies this characterisation must contain a path that con-
tains an infinite amount of positive defined predicates. By Proposition 24 on
page 32 and the argument following it, this implies the existence of an infinite
strictly descending sequence of ordinals, which is impossible. Here we have
made yet another simplification, namely that we consider only those paths just
mentioned, going from the couple on the left to the couple on the right, and not
their symmetric counterparts. For example, besides the first pattern, theoreti-
cally it could also be the case that there is a path containing a positive defined
predicate (z,A) 7→ (y,A), although it’s difficult to imagine any actual scenario
where a model would have this property.

We will represent the situation by building up a typed first order theory which
describes the most important aspects. If this theory turns out unsatisfiable, we

50

have reached our goal. The branch T can be seen as the set of integers, where
each number represents the next copy of x, so 3 represents x3, the fourth copy
of x in T . These integers each have two elements A and B. To represent
paths between elements of nodes we use a five place predicate P , which also
indicates the number of positively defined predicates that appear in this path.
For example, P (1, A, 2, B, 1) states that there is a path(x1, A) 7→ (x2, B) that
contains one positive defined predicate.

The first constraint restricts the search space a little.

∀x, y, e, f,m, n : P (x, e, y, f,m) ∧ n 6= m⇒ ¬P (x, e, y, f, n)

The second expresses that there is a maximum number of positively defined
predicates that any path may contain. It is this proposition which we want to
falsify.

∃m ∈ N : ∀x, y, e, f, n : P (x, e, y, f, n)⇒ n ≤ m

Next we express that P is “additively” transitive.

∀x, y, z, e, f, g,m, n : P (x, e, y, f,m) ∧ P (y, f, z, g, n)⇒ P (x, e, z, g, n+m)

Likewise, every path must be the union of two shorter paths, i.e. every path
must enter each node it passes.31

∀x, y, e, f,m : P (x, e, y, f,m)⇒ (∃g, n : n ≤ m∧P (x, e, y−1, g, n)∧P (y−1, g, y, f,m−n))

Then a formula that prohibits cycles with positive defined predicates.

∀x, e, n : n > 0⇒ ¬P (x, e, x, e, n)

And lastly we add the constrain that all couples must be connected in one
of the six ways described.

∀x, y : x < y ⇒ (∃e, f : (P (x, e, y, f, 1) ∧ P (x, f, y, e, 0))∨
31The given formula implies this.

51

(P (x,A, x,B, 1) ∧ P (y,B, y,A, 0)) ∨ (P (x,A, x,B, 0) ∧ P (y,B, y,A, 1)))

We used the IDP-system32 to try and prove for finite trees that the maximum
number of positive defined predicates in a path increases with the length of
the tree, but this only proved succesful up until a tree containing 16 copies of
x, for which it was proven that every model will have a path with at least 4
positive defined predicates. For larger trees, the propositional SAT-solver that
lies behind the system ran out of memory. To prove the theory unsatisfiable in
the infinite case would require a theorem-prover capable of inductive proofs.

We will now prove that G is cycle-free. (Assuming that the former proof is
completed, of course.) We have shown earlier already that there is no cycle in
G containing a positive defined atom which doesn’t contain an edge that exists
due to the closing rule, therefore assume there is a cycle which isn’t harmless in
G containing a positive defined atom P (c) such that the cycle contains an edge
that was created by an application of the closing rule. Thus there is a sequence
of connected nodes (mi, ψi)i∈[a,b] with ψa = ψb = P (c) andma = mb. For some
[(x, φ); (y, ψ)] occurring in (mi, ψi)i∈[a,b], it holds that ∃z : (y, z) ∈ safe(T) and
[(x, φ); (y, ψ)] came into existence - replacing [(x, φ); (z, ψ)] - by an application
of the closing rule. If y is not an ancestor node of x, then by construction there
must be a cycle-free node v, a v-tree Tv, a v-graph Gv and an ancestor w of
x such that (v, y), (v, w) ∈ blocked(T), 33 and [(x, φ); (y, ψ)] ∈ Gv. The same
holds for any other edge [(p, φ); (r, ψ)] of the cycle that was created by the
closing rule and for which (v, r) ∈ blocked(T) or v = r, since all safe pairs with
copies of v come from the same Sv.

First assume that all edges that resulted from the closing rule in the cycle
are of this form. Since the cycle is not harmless, and the first condition for
harmlesness is already fulfilled, it doesn’t contain any node a for which a < v.
If it did, then for the edge which resulted from the closing rule that occurs
nearest in the cycle before the edge going to a, the second and third criterion
would also have to be fulfilled.34 But this means that the cycle occurs in Gv as

32This was developed by the Knowledge Representation and Reasoning research group
at the Catholic University of Leuven. It is a finite model-generator for FO(ID), see
http://dtai.cs.kuleuven.be/krr/software/idp for details.

33Or v = w, or w = x, but not both.
34Although the harmless criterion does allow there to be edges [(a, α); (v, ψ)] with a < v, such

an edge implies the existence of an edge which is explicitly forbidden.

52

well, contradicting that v is cycle-free.
Now assume there is another edge [(s, φ); (t, ψ)] in the cycle that resulted

from the closing rule, but (v, t) /∈ blocked(T) and v 6= r. If (t, v) ∈ blocked(T),
then we can repeat the previous argument by replacing v with t. Therefore
assume that (t, u) ∈ safe(T) for some u which isn’t a copy of v, i.e. (u, v) /∈
blocked(T) ∧ (v, u) /∈ blocked(T) ∧ v 6= u. As in the previous situation, there is
a cycle-free node d such that (d, u) ∈ blocked(T) (or d = u) and [(s, φ); (t, ψ)] ∈
Gd. Similarly, since the cycle is not harmless, it doesn’t contain any node e

for which e < d. Since there must a cycle-free node f such that the whole
cycle occurs in a f -tree Tf , it follows that f = d = v. This contradicts that
(d, u) ∈ blocked(T). Thus we have established that G is cycle-free, and hence
that T is clash-free.

53

7 Examples

7.1 Why one blocked node isn’t enough

Our reasoning procedure has quite complex conditions with regard to termi-
nating the expansion of nodes, requiring for each node x of which copies keep
showing up in T that we check every possible x-tree and every possible x-graph
for cycle-freeness. A superficial argument suggests that the simple applicability
rules should be sufficient, it goes as follows.

Assume there is a branch in T [x] which prevents x from being cycle-free
because there is a copy of x on it and in between those there is a problematic
path containing a positive defined atom. Either the same holds for every copy
of x and the corresponding branch, so that no matter how many copies we add
x will never be cycle-free; or there is a copy x′ for which the same branch can
be expanded without this problem arising. In the first case it’s obviously useless
to keep expanding T and hoping for the best, so the complex applicablity rules
are of no avail. In the second case one could just as well have expanded the
original branch starting in x in the same way as one did in x′, since they are
copies of one another. Therefore we could simplify the applicability rules to
stating that no expansions may occur on a blocked node.

To prove that this approach is too simplistic, and that it is very well possible
that one may need several copies of x in order to see how a problematic branch
may become unproblematic in the light of a larger tree, we present an example
of a satisfiable theory which would be dismissed as unsatisfiable by the simple
approach. The definition is given by:

∀x, y : P (x, y)←M(x, y) ∧ [∀v : T (y, v)⇒ [∀w : V (v, w)⇒ (∀l : M(w, l)⇒ P (w, l))]]

∀x, y : P ′(x, y)←M ′(x, y) ∧ [∀v : T (y, v)⇒ [∀w : V (v, w)⇒ (∀l : M ′(w, l)⇒ P ′(w, l))]]

∀x, y : Q(x, y)←M(x, y) ∨ [∃v : T (y, v) ∧ [∃w : V (v, w) ∧ (∃l : M(w, l) ∧ ¬P (w, l))]]

∀x, y : Q′(x, y)←M ′(x, y) ∨ [∃v : T (y, v) ∧ [∃w : V (v, w) ∧ (∃l : M ′(w, l) ∧ ¬P ′(w, l))]]

There are four defined predicates, which can be grouped into pairs in two
ways: P and P ′ (and Q and Q′) have an identical structure, and P and ¬Q (and
P ′ and ¬Q′) have the same universal formula in their body. Their meaning
is as follows: we will create an infinite branch T with an infinite number of
copies of a node x, x0, x1, x2, ... In between each path xi 7→ xi+1, there will

54

be either a copy of a node y or a copy of a node z. These are constructed
so that {P (1, 2);M(1, 2);Q(1, 2);¬Q′(1, 2);¬M ′(1, 2);¬P ′(1, 2)} ⊂ CT (y) and
{P ′(1, 2);M ′(1, 2);Q′(1, 2);¬Q(1, 2);¬M(1, 2);¬P (1, 2)} ⊂ CT (z).

We will look more closely at CT (y), the situation is symmetric for z. The
predicate M is open, so it doesn’t depend on anything. P (1, 2) ∈ CT (y) be-
cause ofM(1, 2) and the presence of the universal formula in ϕP (1, 2) in CT (y).
Q(1, 2) ∈ CT (y) because ofM(1, 2), the presence of ¬P ′(1, 2) in CT (y) is justi-
fied by the absence ofM ′(1, 2), and ¬Q′(1, 2) ∈ CT (y) because of the absence
of M ′(1, 2) and the presence of the universal formula in ¬ϕQ′(1, 2), which is the
same formula as in the body of P ′(1, 2). This last fact is what allows this univer-
sal formula to be present in both CT (y) and in CT (z), the one time because of
the absence of Q′, the other because of the presence of P ′. It’s precisely this
formula which will be responsible for there being an infinite amount of copies
of x. Note that only the presence of P (1, 2) is relevant for the cycle-freeness of
G.

The formula ϕ to be satisfied is a conjunction of formulas that have different
purposes. The first three are given by

ϕ1 = ∀x, y : S(x, y)⇒ ∃z : T (y, z) ∧ >

ϕ2 = ∀x, y : T (x, y)⇒ ∃z : V (y, z) ∧ >

ϕ3 = ∀x, y : V (x, y)⇒ ∃z : S(y, z) ∧ >

These universal formulas are there simply to create an infinite domain and
an infinite branch in T . This could be done with only two formulas of this kind,
(and thus only two predicates), but we added a third to make sure that we end
up in a node xi+1 with the exact same labels as an older node xi, including the
constants C(xi). If we only used two formulas, xi ∼c xi+1, for some c ∈ C(xi),
so that it would refer to the same domain element in both nodes, which isn’t the
intention.

ϕ4 = ∀x, y : S(x, y)⇒ (M(x, y) ∧ ¬Q′(x, y)) ∨ (M ′(x, y) ∧ ¬Q(x, y))

This formula makes sure that one ends up either in a copy of y or in a

55

copy of z. A smart expansion, i.e. one making ϕ satisfiable, is one that keeps
switching between the two.

ϕ5 = ∀x, y : S(x, y)⇒ (¬S(y, x) ∧ x 6= y ∧ ¬T (y, x))

ϕ6 = ∀x, y : T (x, y)⇒ (¬T (y, x) ∧ x 6= y ∧ ¬V (y, x))

ϕ7 = ∀x, y : V (x, y)⇒ (¬V (y, x) ∧ x 6= y ∧ ¬S(y, x))

These formulas are there simply to provide some constraints, so that there
isn’t an easy escape route. The next formula serves to start things off in the first
node, which strictly speaking isn’t part of the sequence (xi)i≥0, but resembles
x closely.

ϕ8 = ∃x, y : [V (x, y) ∧ [∀l : M(y, l)⇒ P (y, l)] ∧ [∀l : M ′(y, l)⇒ P ′(y, l)]]

ϕ = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5 ∧ ϕ6 ∧ ϕ7 ∧ ϕ8

In Figure 9 we show a clash-free completion structure T for ϕ, and its
dependency graph G before the closing rule is applied, where double arrows
indicate that we move to a new node in T and single arrows indicate edges
in G. We do not show every node of G, since this would give a very crowded
figure, but restrict ourselves to the essential nodes. Also, we skip edges be-
tween nodes containing the same universal formula. The boxed nodes are the
ones showing paths containing a positive defined atom, the first path contain-
ing P (1, 2) and the second one containing P ′(1, 2). Node 7 is a copy of node 4,
and node 1 can be considered a copy of these as well, since it’s clear that we
can expand even further so that node 10 would be a copy. Thus the sequence
(xi)i≥0 corresponds to (1 + i ∗ 3)i≥0. Nodes 2 and 5 correspond to nodes y and
z respectively. From 1 to 4 there’s a path from a formula to itself containing the
positive defined atom P (1, 2). If we were to stop at 4, then clearly the closure of
G wouldn’t be cycle-free. From 4 to 7 there’s a path from another formula (the
P ′ version) to itself containing the positive defined atom P ′(1, 2). By expanding
T until we have three copies of x rather than two, we have succeeded in mak-
ing sure that the closure of G cycle-free, thereby showing that one cannot get

56

by with simpler applicability rules.

57

(ε, ϕ8)

��
(1, ϕ8)

��
(1, [V (0, 1) ∧ [∀l : M(1, l)⇒ P (1, l)] ∧ [∀l : M ′(1, l)⇒ P ′(1, l)])

�� ,,XXXXXXXXXXXXXXXXXX

sshhhhhhhhhhhhhhh

(1, V (0, 1)) (1,∀l : M(1, l)⇒ P (1, l))

yy

(1,∀l : M ′(1, l)⇒ P ′(1, l))

(1, ϕ3) // (1,∃z : S(1, z) ∧ >)

��
(2,∃z : S(1, z) ∧ >)

��
(2, S(1, 2))

(2, ϕ4) // (2, (M(1, 2) ∧ ¬Q′(1, 2)) ∨ (M ′(1, 2) ∧ ¬Q(1, 2)))

��
(2,M(1, 2) ∧ ¬Q′(1, 2))

ssgggggggggggggg

,,YYYYYYYYYYYYYYYYYY

(2,M(1, 2)) (2,¬Q′(1, 2))

zzttttttttttttttttttttttttttttttttt

��////////////////////

(2, P (1, 2))

kkVVVVVVVVVVVVVVV

��
(2,∀v : T (2, v)⇒ [∀w : V (v, w)⇒ (∀l : M(w, l)⇒ P (w, l))]))

��

(2,∀v : T (2, v)⇒ [∀w : V (v, w)⇒ (∀l : M ′(w, l)⇒ P ′(w, l))])

��

(2,¬M ′(1, 2))

(2, ϕ1) // (2,∃z : T (2, z) ∧ >)

��

58

&&

��

ww

(3,∃z : T (2, z) ∧ >)

��
(3, T (2, 0))

(3,∀w : V (0, w)⇒ (∀l : M(w, l)⇒ P (w, l)))

ww

(3,∀w : V (0, w)⇒ (∀l : M ′(w, l)⇒ P ′(w, l)))

''

(3, ϕ2) // (3,∃z : V (O, z) ∧ >)

��
(4,∃z : V (0, z) ∧ >)

��
(4, V (0, 1))

(4,∀l : M(1, l)⇒ P (1, l))

(4,∀l : M ′(1, l)⇒ P ′(1, l))

yy

(4, ϕ3) // (4,∃z : S(1, z) ∧ >)

��
(5,∃z : S(1, z) ∧ >)

��
(5, S(1, 2))

(5, ϕ4) // (5, (M(1, 2) ∧ ¬Q′(1, 2)) ∨ (M ′(1, 2) ∧ ¬Q(1, 2)))

rreeeeeeeeeeeeeeeee

(5,M ′(1, 2) ∧ ¬Q(1, 2))

ttjjjjjjjjjj

,,YYYYYYYYYYYYYYYYYYYY

(5,M ′(1, 2)) (5,¬Q(1, 2))

��xxrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

(5, P ′(1, 2))

iiSSSSSSSSS

��
(5,∀v : T (2, v)⇒ [∀w : V (v, w)⇒ (∀l : M ′(w, l)⇒ P ′(w, l))]))

ttiiiiiiiiiiii

59

00

��

��
(5,¬M(1, 2))

(5,∀v : T (2, v)⇒ [∀w : V (v, w)⇒ (∀l : M(w, l)⇒ P (w, l))])

vv

(5, ϕ1) // (5,∃z : T (2, z) ∧ >)

��
(6,∃z : T (2, z) ∧ >)

��
(6, T (2, 0))

(6,∀w : V (0, w)⇒ (∀l : M ′(w, l)⇒ P ′(w, l)))

tt

(6,∀w : V (0, w)⇒ (∀l : M(w, l)⇒ P (w, l)))

((

(6, ϕ2) // (6,∃z : V (O, z) ∧ >)

��
(7,∃z : V (O, z) ∧ >)

��
(7, V (0, 1))

(7,∀l : M ′(1, l)⇒ P ′(1, l))

(7,∀l : M(1, l)⇒ P (1, l))

(7, ϕ3) // (7,∃z : S(1, z) ∧ >)

Figure 9: Example 1

60

7.2 Proof of Even or Uneven

We give a simple example of an application of our reasoning procedure to
prove that no number can be both even and uneven. As with many other basic
concepts of arithmetic, the predicates even and uneven are inductively defined,
and therefore the language of FO(ID) is perfectly suited to express them. They
can be defined as follows, where the binary predicate S replaces the usual
successor function with a successor predicate, which appears in our theory as
an open predicate.∀x : E(x)← x = 0 ∨ ∃y : S(y, x) ∧ ¬E(y)

∀x : U(x)← S(0, x) ∨ ∃y : S(y, x) ∧ ¬U(y)

In order to prove that no number is both even and uneven, we add the
negation of this claim to our theory and try to find a model. If this fails, the
claim is entailed by our theory. In order not to overcomplicate matters too
much, not all Peano Axioms, which characterise the natural numbers, will be
added. For example, we do not define the equality predicate, but implicitly
assume that its usual properties hold. Neither do we add the Domain Closure
Axiom, which was mentioned already on page 3. It states that the set of all
numbers is the transitive closure of the successor relation. We will not need
the axiom as such for our proof, but we do take it implicitly to hold that every
strictly positive number has a predecessor, which is a weaker constraint. We
do need the Unique Name Property, which states that every number has at
most one predecessor, given by35

∀x, y : S(x, y)⇒ (∀z : S(z, y)⇒ z = x)

Without this property it would be impossible to prove our claim, since it
wouldn’t hold. A simple counterexample is given by the model

E(a), U(a), E(0),¬U(0),¬E(1), U(1), S(1, a)S(0, a), S(0, 1),¬S(0, 0), ...

However it is impossible to express the Unique Name Property in Guarded
FO(ID), since x appears as a free variable in the nested universal formula but
not in its guard S(z, y). Fortunately there is a way to circumvent this. We cannot

35Remark that, since S is given by a predicate rather a function, the uniqueness of a successor
for every number would require an extra axiom. We will not need this property so we leave it out.

61

express that any two predecessors of the same number have to be identical,
but we can express that they are indiscernible, i.e. they have the exact same
properties.

The theory as a whole is given by∀x : E(x)← x = 0 ∨ ∃y : S(y, x) ∧ ¬E(y)

∀x : U(x)← S(0, x) ∨ ∃y : S(y, x) ∧ ¬U(y)

ϕ1 = ∀x : S(x, 0)⇒ ⊥

ϕ2 = ∀x, y : S(x, y)⇒ (E(x) ∨ (∀z : S(z, y)⇒ ¬E(z)))

ϕ3 = ∀x, y : S(x, y)⇒ (¬E(x) ∨ (∀z : S(z, y)⇒ E(z)))

ϕ4 = ∀x, y : S(x, y)⇒ (U(x) ∨ (∀z : S(z, y)⇒ ¬U(z)))

ϕ5 = ∀x, y : S(x, y)⇒ (¬U(x) ∨ (∀z : S(z, y)⇒ U(z)))

ϕ6 = ∃x : E(x) ∧ U(x)

ϕ = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5 ∧ ϕ6

In the figure on the following page, we show the expansion of a non-contradictory
completion structure T for ϕ and its dependency graph G. As in the previous
example, we only show the most important nodes of G, and we focus mainly
on one branch of T since the other ones are completely similar. Further, we
show the expansion only up until node 4. Because 4 and 2 contain different
constants, they aren’t copies of each other, but it’s clear that node 6 will be a
copy of 2. In between 2 and 6 there is a path containing the positive defined
atom E(e), that goes from (2,¬E(d)) to (6,¬E(d)). Therefore G would not be
cycle-free after the application of the closing rule at this point, and will never be
cycle-free if we continue our expansion in this manner. Of course this by itself
doesn’t prove anything, since our algorithm is non-deterministic, so that there
might be other expansions of T which would work. However the only choices

62

we had to make where such that we tried to avoid ending up in a contradic-
tion. For example, if we were to choose c = 0 in the disjunct in node 1, we
would obtain a contradiction by ϕ1 because of S(d′, c). The other choices can
be defended similarly.

63

(ε, ϕ6)

��
(1, ϕ6)

��
(1, E(c) ∧ U(c))

rreeeeeeeeeeeeeeeeeeeeee

,,YYYYYYYYYYYYYYYYYYYYYY

(1, E(c))

��

(1, U(c))

��
(1, c = 0 ∨ ∃y : S(y, c) ∧ ¬E(y))

��

(1, S(0, x) ∨ ∃y : S(y, c) ∧ ¬U(y))

��
(1,∃y : S(y, c) ∧ ¬E(y))

��

(1,∃y : S(y, c) ∧ ¬U(y))

��
(2,∃y : S(y, c) ∧ ¬E(y))

��

(3,∃y : S(y, c) ∧ ¬U(y))

��
(2, S(d, c) ∧ ¬E(d))

�� ((RRRRRRRRRRRRRRRRRRRRRRRRRR
(3, S(d′, c) ∧ ¬U(d′))

(3, ϕ4) // (3,∀z : S(z, c)⇒ ¬U(z))

��
(2,¬E(d))

��

(2, S(d, c)) (2,¬U(d))

��
(2,¬d = 0 ∧ ∀y : S(y, d)⇒ E(y))

��

(2,¬S(0, d) ∧ ∀y : S(y, d)⇒ U(y))

��
(2, (E(e))

��

(2, S(e, d)) (2, U(e))

��
(2,∃y : S(y, e) ∧ ¬E(y))

��

(2,∃y : S(y, e) ∧ ¬U(y))

��(4,∃y : S(y, e) ∧ ¬E(y))

��
(4, S(f, e) ∧ ¬E(f))

�� ((RRRRRRRRRRRRRRRRRRRRRRRRRR

(5, ϕ4) // (5,∀z : S(z, e)⇒ ¬U(z))

��
(4,¬E(f))

��

(4, S(f, e)) (4,¬U(f))

��
(4,¬f = 0 ∧ ∀y : S(y, f)⇒ E(y))

��

(4,¬S(0, f) ∧ ∀y : S(y, f)⇒ U(y))

��
(4, (E(g))

��

(4, S(g, f)) (4, U(g))

��
(4,∃y : S(y, g) ∧ ¬E(y)) (4,∃y : S(y, g) ∧ ¬U(y))

64

8 Conclusion

In this work we have presented a deductive reasoning procedure for the guarded
fragment of FO(ID). We focussed first on what we defined as the simple guarded
fragment of FO(ID), after which we generalized the approach to the whole frag-
ment. Although the final algorithm contains pretty complex expansion and ap-
plicability rules, these were necessary largely due to exceptional instances. We
predict that in practice in most cases the choices to be made will follow quite
naturally out of the theory. Therefore an implementation that allows the user to
guide the expansion will probably be most effective.

Unfortunately completeness of the general procedure remains a conjecture
rather than a theorem. At present we see two possible ways out of this. The
first one is to continue along the direction that was set forth in our proof, by
producing a first order theory that formalizes the constraints and properties of
the tree T in case it contains more than one branch. Then one could either
try to look for a suitable automated theorem prover to falsify this theory, or use
results from the field of combinatorics to do so. The second direction consists
in delving into tree-automata theory, and look for theorems concerning char-
acteristics of accepted trees of 2ATA’s. We already have the correspondence
between models and accepted trees of specific 2ATA’s, and a lot of work has
been done on analyzing the languages that are accepted by infinite tree au-
tomata [3]. It fell outside the scope of this project to perform a detailed study
of the literature in this domain, since our aim was precisely to avoid the use of
indirect tools such as automata and focus on the properties of FO(ID) itself.

65

9 Appendix: Nederlandstalige Samenvatting

In [5] werd eerste orde logica uitgebreid met inductieve definities (FO(ID)), om
het mogelijk te maken inductief gedefinieerde concepten uit te drukken. Eerste
orde logica op zich is al onbeslisbaar, waardoor het toevoegen van inductieve
definities automatisch deductief redeneren bijzonder lastig maakt. Binnen het
domein van de kennisrepresentatie, net zoals in de logica in haar geheel, is
men steeds op zoek naar een evenwichtige balans tussen expressiviteit en
beslisbaarheid. Vandaar werd naar analogie met het guarded fragment van
eerste orde logica ([1]), het guarded fragment van FO(ID) geïntroduceerd in
[20]. Hiermee bekomt men zowel de karakteristieken van FO(ID) als beslis-
baarheid. Ondanks het bestaan van een beslisbaarheidsresultaat voor dit
fragment, zijn er nog geen effectieve algoritmes ontwikkeld om hiermee te re-
deneren. De opzet van het huidige werk is om deze situatie recht te zetten
door zulke algoritmes te ontwikkelen, die het mogelijk maken om automatisch
na te gaan of een guarded FO(ID) theorie een model heeft. Om dit te bereiken
bouwen we verder op bestaande technieken uit het verwante domein van Open
Answer Set Programming, hetgeen een uitbreiding is van de declaratieve pro-
grammeertaal Answer Set Programming.

In het eerste hoofdstuk na de inleiding wordt FO(ID) geïntroduceerd, waarna
haar syntax en semantiek worden uiteengezet. Nadat we OASP kort inleiden,
maken we een vergelijking van de semantiek van beide talen. Dit zal ons toe-
laten om het verband tussen beide paradigma’s te belichten. Op het einde van
het hoofdstuk wordt er ingegaan op de notie van guardedness, meer specifiek
vestigen we de aandacht op de relatie hiervan met modellen die een boom-
structuur hebben.

Het derde hoofdstuk presenteert de theoretische resultaten rond guarded
FO(ID) in verband met beslisbaarheid. Deze zullen we later nodig hebben om
de correctheid van onze algoritmes te bewijzen. Beslisbaarheid wordt aange-
toond door voor elke guarded FO(ID) theorie een alternerende automaat te
ontwikkelen die bomen neemt als input, met de eigenschap dat deze automaat
de lege taal bepaalt asa de theorie geen model heeft.

In het vierde hoofdstuk presenteren we een algoritme voor een beperkte
vorm van guarded FO(ID), met name voor simple guarded FO(ID). Dit algoritme
bereidt de weg voor de algemene versie, en introduceert enkele essentiële
concepten. De belangrijkste notie is die van een completion structure. Een
dergelijke structuur bestaat uit de combinatie van een eindige boom met een

66

aantal labelling functies en een gerichte graaf, die dient om een mogelijk model
voor te stellen. Bepaalde verzamelingen van knopen van de boom komen
overeen met elementen van het domein, en de labels bevatten formules over
deze elementen. De graaf duidt de afhankelijkheden tussen formules aan. Het
algoritme gaat na of de labels en de paden in de graaf de nodige informatie
bevatten om de aanwezigheid van atomen in een model te rechtvaardigen.

Het centrale resultaat wordt uiteengezet in het volgende hoofdstuk. Het al-
goritme uit het vorige hoofdstuk wordt uitgebreid om gebruikt te kunnen worden
voor het volledige guarded fragment. Een model wordt nog steeds voorgesteld
door een completion structure, maar er zullen complexere regels gelden om
een dergelijke structuur op te bouwen en na te gaan of deze effectief een model
voorstelt. Completion structures waarvoor dit geldt noemen we clash-free.

Hoofdstuk zes bevat de bewijzen die onze aanpak legitimeren. Eerst tonen
we aan dat ons algoritme eindigt. Vervolgens bewijzen we dat elk clash-free
completion structure opgebouwd vanuit een guarded FO(ID) theorie door het
algoritme inderdaad een model voorstelt. Andersom zou moeten gelden dat
er voor elke theorie die een model heeft door het algoritme een clash-free
completion structure wordt gegenereerd. Helaas zijn we er maar gedeeltelijk in
geslaagd dit hard te maken, meer specifiek is het ons niet gelukt aan te tonen
dat de completion structure eindig blijft. We geven echter wel aan in welke
richting een bewijs hiervan zou moeten evolueren.

Het laatste hoofdstuk bevat twee voorbeelden die het gebruik van de on-
twikkelde procedure illustreren. Het eerste voorbeeld toont aan dat men wel
degelijk nood heeft aan complexe regels om te bepalen wanneer de uitbreiding
van een completion structure dient te stoppen. In het tweede voorbeeld passen
we onze methode toe om een simpele rekenkundige eigenschap te bewijzen.

67

References

[1] Andréka H., Németi I., and van Benthem J.; Modal languages and
bounded fragments of predicate logic. In J. of Philosophical Logic,
27(3):217–274, (1998).

[2] van Benthem J.; Dynamic bits and pieces. ILLC research report, University
of Amsterdam, (1997).

[3] Comon H. et al.; Tree Automata Techniques and Applications, Available
on: http://www.grappa.univ-lille3.fr/tata, (2007).

[4] Dantsin E., Eiter Th., Gottlob G. and Voronkov A.; Complexity and expres-
sive power of logic programming. In Proceedings of the Twelfth Annual
IEEE Conference on Computational Complexity, Ulm, Germany, 82–101,
(1997), IEEE Computer Society Press.

[5] Denecker M.; Extending Classical Logic with Inductive Definitions. In Pro-
ceedings of the 8th International Workshop on Nonmonotonic Reasoning,
Breckenridge, Colorado, USA, 1-10, (2000).

[6] Feier C. and Heymans S.; A sound and complete algorithm for
simple conceptual logic programs. Technical Report INFSYS RE-
SEARCH REPORT 184-08-10, KBS Group, Technical University Vienna,
Austria, (2008). http://www.kr.tuwien.ac.at/staff/heymans/priv/projects/fwf-
doasp/alpsws2008-tr.pdf.

[7] Gelfond M. and Lifschitz V.; The Stable Model Semantics for Logic Pro-
gramming. In Proc. of ICLP’88, 1070–1080, Cambridge, Massachusetts,
MIT Press, (1988).

[8] Grä̈del E. and Walukiewicz I.; Guarded fixed point logic. In Logic in Com-
puter Science, 45–55, (1999).

[9] Grädel E.; On the Restraining Power of Guards. In Journal of Symbolic
Logic, 64(4):1719–1742, (1999).

[10] Heymans S., Van Nieuwenborgh D., and Vermeir D.; Semantic Web
Reasoning with Conceptual Logic Programs. In Proc. of RuleML 2004,
113–127. Springer, (2004).

68

[11] Heymans S., Van Nieuwenborgh D., and Vermeir D.; Conceptual logic pro-
grams. In Annals of Mathematics and Artificial Intelligence (Special Issue
on Answer Set Programming), 47(1–2):103–137, (2006).

[12] Heymans S., Van Nieuwenborgh D., and Vermeir D.; Open answer set pro-
gramming with guarded programs. In ACM Transactions on Computational
Logic (TOCL), 9(4), (2008).

[13] Heymans S., Van Nieuwenborgh D., and Vermeir D.; Extending Concep-
tual Logic Programs with Arbitrary Rules. In Proceedings of Answer Set
Programming: Advances in Theory and Implementation (ASP 2005), vol
142 , CEUR-WS.org, (2005).

[14] Heymans S., Van Nieuwenborgh D., and Vermeir D.; Hybrid Reasoning
with Forest Logic Programs. In Proceedings of 6th Annual European Se-
mantic Web Conference (ESWC 2009), vol 5554 of Lecture Notes in Com-
puter Science, 338-352, (2009).

[15] Hou P., Wittocx J., Denecker M.; A Sequent Calculus Proof System for
PC(ID), Unpublished.

[16] Lifschitz, V.; Introduction to Answer Set Programming.

[17] Lifschitz, V., Pearce, D., and Valverde, A.; Strongly equivalent logic pro-
grams. ACM Trans. Comput. Syst. 2(4), 526–541, (2001).

[18] Mariën M., Gilis D., and Denecker M.; On the relation between ID-Logic
and Answer Set Programming. In José Júlio Alferes and João Alexandre
Leite, editors, JELIA’04, LNCS 3229, 108–120. Springer, (2004).

[19] Vennekens J. and Denecker M.; FO(ID) as an extension of DL with rules.
In European Semantic Web Conference, Lecture Notes in Computer Sci-
ence, (2009). To appear.

[20] Vennekens J. and Denecker M.; A Guarded Fragment of FO(ID) and its
Decidability, Unpublished.

69

