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1 Introduction

The Hardest Logic Puzzle ever is a puzzle introduced by
Boolos (1996), which has attracted quite a lot of attention
from philosophers. The puzzle is formulated as follows.

Three gods A, R, and C are called, in some
order, True, False, and Random. True al-
ways speaks truly, False always speaks falsely,
but whether Random speaks truly or falsely is
a completely random matter. Your task is to de-
termine the identities of A, R, and C by asking
three yes-no questions; each question must be put
to exactly one god. The gods understand English,
but will answer all questions in their own lan-
guage, in which the words for “yes” and “no” are
“da” and “ja,” in some order. You do not know
which word means which.

We here present a systematic solution to the puzzle in its
most natural interpretation, i.e., the interpretation that we
take to be the intended interpretation. Concretely, we take it
that Random truly answers randomly, and we require that
all questions be truly yes-no questions. The latter means
that in any given circumstance, for any god, there is always
a correct answer to the question.

For anyone unfamiliar with the literature on this puzzle,
it might seem as if our interpretation is simply a restate-
ment of part of the puzzle. However some authors found
aspects of the puzzle that are left somewhat ambiguous in
Boolos’ formulation, which has led the way to a range of
variants on this puzzle that fill in this ambiguity in different
ways. [note: give references (Rabern and Rabern, 2008;
Uzquiano, 2010; Wheeler and Barahona, 2012), and say
something about paradoxical questions, and the behaviour
of Random.]

[note: (wikipedia) Rabern and Rabern (2008) suggest mak-
ing an amendment to Boolos’ original puzzle so that Ran-
dom is actually random. The modification is to replace
Boolos’ third clarifying remark with the following:[5]

“Whether Random says ja or da should be thought of as
depending on the flip of a coin hidden in his brain: if the
coin comes down heads, he says ja; if tails, he says da.”
This is also our interpretation of Random.]

Any solution to the puzzle consists of a strategy on which
questions to ask, where the second and third question de-
pend on the answers given to the previous questions. The
fact that we will solve the puzzle systematically, implies
that in some sense we will describe all possible solutions to
it. In some sense, because there will still be a large degree
of freedom as to exactly how one formulates the questions.
More precisely, what we shall do for each of the three ques-
tions, is to characterize to which statement they have to be
equivalent.

Name the three gods X , Y and Z; their descriptions T , F
and R (short for True, False, and Random); and the three
questions Q1, Q2 and Q3. We pose Q1 to X . There are six
possibilities regarding the gods’ identities, which we note
as follows.

(X,Y, Z) (1)
a = (R,F, T ) (2)
b = (R, T, F ) (3)
c = (T, F,R) (4)
d = (F, T,R) (5)
e = (T,R, F ) (6)
f = (F,R, T ) (7)

For each i ∈ {1, 2, 3}, let Ai denote the answer given
to Qi. Also, Ai denotes the answers given so far, i.e.,
Ai = {Aj |j ≤ i}. Lastly, let SAi denote the set of all
remaining possible solutions after hearing the answer to
Qi. Further, we define SA0

as the initial set of possibili-
ties {a, b, c, d, e, f}, and s is the solution we are looking
for, i.e., s = SA3

.

2 The First Question

We start with making the following obvious observation.



Observation 1 (Optimal Split). The best any binary ques-
tion can do is to guarantee that the number of possible so-
lutions is reduced by half.

Since the puzzle requires that #SA3
= 1, Observation 1

implies that we need #SA1
≤ 4.

Next we make the following observation.

Observation 2 (Random Split). Given a god G and a
question Qi, for any solution s ∈ SAi−1

such that G =
Random, it holds that s ∈ SAi .

In other words, posing a question to Random does not give
you any information. Since X = R in {a, b}, Observation
2 tells us that {a, b} ⊂ SA1 .

If X 6= R, then we are faced with one of the other 4 possi-
bilities {c, d, e, f}. In this case, by Observation 1, the best
we can aim for is to choose Q1 so that only 2 possibili-
ties of these 4 will remain, i.e., we cannot do better than
#SA1

= 4.

Combining these two conclusions, we get that #SA1
= 4,

and {a, b} ⊂ SA1
.

Applying Observation 1 to the fact that #SA3
= 1 and

#SA1
= 4, we find that #SA2

= 2.

Given Observation 2, if we pose Q2 to Random, then there
will be at least one solution that is compatible with both
possible answers. But that violates the requirement that we
get from #SA1

= 4 to #SA2
= 2. Therefore we have to

make sure that we do not pose Q2 (or Q3) to Random.

Since we know that {a, b} ⊂ SA1
, we may not pose Q2 to

X . Hence Q1 has to be such that it splits up the possibilities
into Y 6= R on the one side and Z 6= R on the other.

Therefore Q1 should be such that:

A1 = da⇒ SA1
= {a, b, c, d} . (8)

A1 = ja⇒ SA1
= {a, b, e, f} . (9)

Obviously the roles of da and ja can be reversed as well.

If X = R then Q1 does not matter, since the above will
hold any way. So for the moment let us assume that X 6=
R, giving SA0

= {c, d, e, f} and:

A1 = da⇒ SA1
= {c, d} . (10)

A1 = ja⇒ SA1
= {e, f} . (11)

[note: the previous and following parts still need to be con-
nected nicely.]

A tempting suggestion would be to simply stipulate to the
gods that regardless of the actual meaning of “da” and “ja”,
they should respond as if “da′′ = yes and “ja′′ = no.
This simple trick would resolve the language barrier. But
of course that would be cheating, because the puzzle states

that the gods answer in their own language, not in some ar-
tificial language that we have just invented. The good news
is that there’s a way we can implement this trick without
cheating.

Any yes-no question is semantically equivalent to a propo-
sition followed by a question mark, so we can write Q1 as
P1?, where P1 is some proposition.

In order to implement our trick, we first consider a simpler
setup. Imagine that we’re not posing our first question to
one of the gods, but to an English-speaking, truthful person
who knows the solution. In that case P1 would simply be:
s ∈ S1, for some subset of solutions S1. If the person
answers “yes”, then SA1

= S1, else SA1
= SA0

\ S1.

Of course one can come up with many different questions
that achieve this, but all of them are merely different for-
mulations of what is semantically the same question: P1?.
The only freedom one has is in choosing an appropriate S1.

For example, instead of asking P1?, we could ask “Is P1

true?”, or put differently, instead of asking about the propo-
sition s ∈ S1, we could ask if > ⇔ s ∈ S1 holds. Or we
can reverse the roles played by “yes” and “no”, and ask
instead if ⊥ ⇔ s ∈ S1 holds.

We are free to replace > with any true proposition, for ex-
ample we can fill in the fact that “yes” means yes: “yes′′ =
yes ⇔ s ∈ S1. In this case, the answer “yes” implies
SA1

= S1 and “no” implies SA1
= SA0

\ S1.

But we can also choose “no′′ = yes ⇔ s ∈ S1 and again
reverse the roles of “yes” and “no”: now the answer “no”
implies SA1

= S1 and “yes” implies SA1
= SA0

\ S1.

What these examples show, is that we can formulate our
proposition P1 in such a way that it does not matter whether
“yes” means yes and “no” means “no”. In both cases, we
have as P1 a statement of the form “X ′′ = yes ⇔ s ∈
S1. Regardless of the meaning of X , for this question it
functions exactly as “yes” does for the statement SA1

=
S1.

Therefore we do not need to know the meaning of “da” and
“ja”, since we can formulate our proposition in a manner
so that “da” functions as yes no matter what: da = yes⇔
s ∈ S1.

Recall that the purpose of Q1 is to find a god of whom
we can be certain that he is not Random. Say we want
to ask if Y 6= Random. This comes down to taking S1

as {a, b, c, d}. That is, if we were asking our question to a
truthful person, then that would be our choice of S1. The
trouble is of course that we have to take into account the
possibility that X = F or X = R.

If X = R, then we’re safe no matter what question we ask,
since we will not pose our second question to X . Therefore
we always meet our goal of posing our second question to



a god who is not Random.

If X = T , then the solution is either c or e. In c we have
that Y 6= R, whereas in e on the other hand Y = R. There-
fore any choice of S1 so that c ∈ S1 and e 6∈ S1 is fine. If
the answer is da, then Y 6= R, and otherwise Z 6= R.

If X = F , then the solution is either d or f . In d we have
that Y 6= R, whereas in f on the other hand Y = R. The
fact that X = F means that we should choose S1 so that
f ∈ S1 and d 6∈ S1. Again this ensures that answering da
implies that Y 6= R, and else Z 6= R.

Combining the three possibilities for X , we get the follow-
ing two conditions: {c, f} ∈ S1, and {e, d} 6∈ S1. So the
easiest choice for P1 would be:

“da′′ = yes⇔ s ∈ {c, f}.

Boolos makes the same choice in his article, be it that the
roles of da and ja are reversed. Rabern & Rabern choose
S1 = {a, b, d, e} and S2 = {a, b, c, f}. [NOTE: I do intend
to explain this in a longer version.]

3 The Second Question

On to the second question. We have found out after Q1

that either Y 6= R, or that Z 6= R. Let’s assume Y 6= R,
the reasoning is completely analogous for Z 6= R. In other
words, we assume that A1 = da, so that SA1

= {a, b, c, d}.

As with the first question, only statements that are equiva-
lent to a statement of the following form are allowed:

“da′′ = yes⇔ s ∈ S2.

We have to reduce the number of possible solutions from
4 to 2. Hence we have to choose a set S2 so that the an-
swer da corresponds to two members of {a, b, c, d}, and ja
corresponds to the remaining two.

This excludes trying to figure out if X = T , X = F , Z =
T , or Z = F , since there is only member of {a, b, c, d} that
satisfies each of those. Of course we also have to exclude
focussing on whether Y = R, since that would give us
no information at all. As a result, X 6= R is the same as
Z = R, and Z 6= R is the same as X = R.

That leaves us with Z = R, X = R, Y = T , or Y = F .

The first two of these are analogous to the situation we
faced for the first question. For example, we can figure out
if Z = R by making sure that {a, d} ⊂ S2 and {b, c} 6⊂ S2.

The last two options are somewhat different. We could ap-
ply the same procedure as before, but there’s an easier solu-
tion. The fact that we’re asking Y a question to figure out
if he answers truthfully allows us to forget about S2 and
focus instead of using any statement that we know to be
true. Ignoring the langauge barrier for a second, the easiest
to way to figure out if Y always speaks the truth or always

lies is to just ask him if p = p, or any other true statement.
Combining this insight with our earlier trick, we get that
the most straightforward strategy is to choose P2 as:

“da′′ = yes⇔ >.

If he answers da, then SA2
= {b, d}, else SA2

= {a, c}.

4 The Third Question

After hearing the second answer, we either know that Y =
T , Y = F , X = R, or Z = R. For all of these we have
that #SA2

= 2, as required. In each case one can apply
one of the strategies we discussed for the second question
to find the unique solution after the third question.

For example, in case X = R, we can try to ask our third
question to either Y or Z in order to see if he speaks truth-
fully. In case Y = T , we can pose our third question to Y
as well, using the same structure as before and choosing a
set S3 so that either b ∈ S3 and d 6∈ S3, or the other way
around.
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